A. | m≥$-\frac{1}{4}$ | B. | m≥$-\frac{1}{4}$且m≠0 | C. | m≤$\frac{1}{4}$ | D. | m≤$\frac{1}{4}$且m≠0 |
分析 先要分类讨论:当m=0时,方程为一元一次方程,有一个实根;当m≠0时,原方程为一元二次方程,通过△≥0求m的范围;最后合并起来得到m的范围.
解答 解:当m=0时,原方程变为x=0,此时原方程的实数根为x=0;
当m≠0时,原方程为一元二次方程,要使原方程有实根,只须△=[-(2m-1)]2-4m•m=-4m+1≥0时,即m≤$\frac{1}{4}$.
所以当m≤$\frac{1}{4}$时,原方程有实数根.
故选C.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
科目:初中数学 来源: 题型:选择题
A. | y=2(x-1)2-2 | B. | y=2(x+1)2-2 | C. | y=2(x+1)2+2 | D. | y=2(x-3)2+2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1道 | B. | 2道 | C. | 3道 | D. | 4道 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-3)-(-5)=-8 | B. | -5÷$\frac{1}{3}$×$\frac{3}{5}$=-25 | C. | (-3)3=-9 | D. | -22÷(-2)2=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com