精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是( )
A.(-2,6)
B.(-2,0)
C.(1,3)
D.(-5,3)

【答案】C
【解析】将点P(-2,3)向右平移3个单位得到点Q,即点Q的横坐标加3,纵坐标不变,则点Q的坐标是(1,3),故选C.
根据坐标系内点的坐标的平移规律解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线a经过点A(1,6),和点B(﹣3,﹣2).

(1)求直线a的解析式;

(2)求直线与坐标轴的交点坐标;

(3)求S△AOB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】﹣23的底数是________,指数是________,结果是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分式方程的解法:
(1)方程两边都乘,去分母,化为方程;
(2)解这个方程;
(3).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】确定圆的位置,确定圆的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在ABCDEF中,AC=DFBC=EFB=E,然后,对∠B进行分类,可分为B是直角、钝角、锐角三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,ABC≌△DEF

(1)如图①,在ABCDEFAC=DFBC=EFB=E=90°,根据______,可以知道RtABCRtDEF

第二种情况:当∠B是钝角时,ABC≌△DEF

(2)如图②,在ABCDEFAC=DFBC=EFB=E,且∠BE都是钝角,求证:ABC≌△DEF

第三种情况:当∠B是锐角时,ABCDEF不一定全等.

(3)在ABCDEFAC=DFBC=EFB=E,且∠BE都是锐角,请你用尺规在图③中作出DEF,使DEFABC不全等.(不写作法,保留作图痕迹)

(4)B还要满足什么条件,就可以使ABC≌△DEF?请直接写出结论:在ABCDEF中,AC=DFBC=EFB=E,且∠BE都是锐角,若______,则ABC≌△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50 km为标准,多于50 km的记为“+”,不足50 km的记为“-”,刚好50 km的记为“0”

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

8

11

14

0

16

41

8

(1)请求出这七天中平均每天行驶多少千米?

(2)若每天行驶100 km需用汽油6升,汽油价6.2/升,请估计小明家一个月(30天计)的汽油费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;

(2)求证:BD=EF;

(3)试判断四边形ABNE的形状,并说明理由.

查看答案和解析>>

同步练习册答案