精英家教网 > 初中数学 > 题目详情

【题目】如图,点D、E分别是AB、AC上的点,BECD于点OBO=CODO=EOAB=ACAD=AE则图中有___________对全等三角形( )

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

SAS证明BOD≌△COE得出BD=CE再由SSS证明△BDC≌△CEBSAS证明△ABE≌△ACD即可得出结论

BO=CO,∠BOD=∠COEDO=EO,∴△BOD≌△COE

∵△BOD≌△COE,∴BD=CE

BO=CODO=EO,∴BE=CD

BD=CEBC=CBCD=BE,∴△BDC≌△CEB

AB=AC,∠A=∠AAE=AD,∴△ABE≌△ACD

故有3对全等三角形

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=C.

(B类)已知如图,四边形ABCD中,AB=BC,A=C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=6,BC=8,AB=10

(1)尺规作图:作AD平分∠CAB,交BC于点D;

(2)求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题:

(1)已知,如图1,ABC中,P点是∠ABC和∠ACB的角平分线的交点,求证:∠P=A+90°。

(2)如图2,若P点是∠ABC和∠ACB外角的角平分线的交点,∠A=80°,那么∠P=____°;

(3)如图3,ABC中,若P点是∠ABC外角和∠ACB外角的角平分线的交点,∠A=,那么∠P=________(请用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求抛物线的解析式
(1)已知抛物线的顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5),求抛物线的解析式.
(2)求经过A(1,4),B(﹣2,1)两点,对称轴为x=﹣1的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y= x2+ 的图象与性质.
小东根据学习函数的经验,对函数y= x2+ 的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y= x2+ 的自变量x的取值范围是
(2)下表是y与x的几组对应值.

x

﹣3

﹣2

﹣1

1

2

3

y

m

求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1, ),结合函数的图象,写出该函数的其它性质(一条即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解决问题:

(1)如图(1),等边ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将ABP绕顶点A旋转到ACP′处,此时ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

请将下列解题过程补充完整。

∵△ACP′≌△ABP,

AP′=  =3,CP′=   =4,   =APB.

由题意知旋转角∠PA P′=60°,∴△AP P′    三角形,

P P′=AP=3,A P′P=60°。

易证P P′C为直角三角形,且∠P P′C=90°,

∴∠APB=AP′C=A P′P+P P′C=    °+   °=   °.

请你利用第(1)题的解答思想方法,解答下面问题:

已知如图(2),ABC中,∠CAB=90°,AB=AC,E、FBC上的点且∠EAF=45°,

求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,CDAB边上的高,AC=4,BC=3,DB=

求:(1)求AD的长;

(2)△ABC是直角三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课堂上学习了勾股定理后,知道勾三、股四、弦五.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.

(1)请你根据上述的规律写出下一组勾股数:11、________、________;

(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=,12=,24=……,于是他很快表示了第二数为 ,则用含a的代数式表示第三个数为________;

(3)用所学知识证明你的结论.

查看答案和解析>>

同步练习册答案