精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠C=90°,ADDB,点EAB的中点,DEBC

1)求证:BD平分∠ABC

2)连接EC,若∠A=30°,DC,求EC的长.

【答案】1)证明见解析;(2

【解析】

1)直接利用直角三角形的性质得出DE=BEAB,再利用DEBC,得出∠2=3,进而得出答案;
2)利用已知得出在RtBCD中,∠3=60°DC=2,得出DB的长,进而得出EC的长.

1ADDB,点EAB的中点,

DE=BEAB

∴∠1=∠2

DEBC

∴∠2=∠3

∴∠1=∠3

BD平分ABC

2ADDBA=30°

∴∠1=60°

∴∠3=∠2=60°

∵∠BCD=90°

∴∠4=30°

∴∠CDE=∠2+∠4=90°

RtBCD中,∠3=60°DC=2

DB=4

DE=BE∠1=60°

DE=DB=4

EC2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=50°,圆O是△ABC的外接圆,AE为圆O的直径,AEBC相交于点D,若AB=AD.则∠EAC=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为4ABC均是⊙O的点,点D是∠BAC的平分线与⊙O的交点,若∠BAC=120°,则弦BD的长为 _____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骆驼被称为沙漠之舟,它的体温随时间的变化而发生较大变化,其体温()与时间(小时)之间的关系如图1所示.

小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).

A.骆驼在时刻的体温与0时体温的绝对差(即差的绝对值)

B.骆驼从0时到时刻之间的最高体温与当日最低体温的差

C.骆驼在时刻的体温与当日平均体温的绝对差

D.骆驼从0时到时刻之间的体温最大值与最小值的差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点到封闭图形的“极化距离”定义如下:任取图形上一点,记长度的最大值为,最小值为(若重合,则),则“极化距离”

1)如图1,正方形以原点为中心,点的坐标为

①点到线段的“极化距离”_______

到线段的“极化距离”_________

②记正方形为图形,点轴上,且,求点的坐标;

2)如图2,图形为圆心轴上,半径为的圆,直线轴,轴分别交于两点,若线段上的任一点都满足,直接写出圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点CB不重合),连接AP,延长BC至点Q,使得∠PAC=QAC,过点Q作射线QH交线段APH,交AB于点M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大小(用含α的式子表示);

2)用等式表示线段QCBM之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线,直线

(1)时,求抛物线与轴交点的坐标;

(2)直线是否可能经过抛物线的顶点,如果可能,请求出的值,如果不可能,请说明理由;

(3),当时,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8BC=12EBC边的中点,点P在线段AD上,过PPFAEF,设PA=x

1)求证:△PFA∽△ABE

2)当点P在线段AD上运动时,是否存在实数x,使得以点PFE为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;

3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出DP满足的条件:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,四边形ABCD为正方形,BFAE,那么BFAE相等吗?为什么?

2)如图2,在RtABC中,BABC,∠ABC90°,DBC边的中点,BEAD于点E,交ACF,求AFFC的值;

3)如图3RtACB中,∠ABC90°,DBC边的中点,BEAD于点E,交ACF,若AB3BC4,求CF

查看答案和解析>>

同步练习册答案