精英家教网 > 初中数学 > 题目详情
(2012•安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.
其中正确的结论的序号是
②和④
②和④
(把所有正确结论的序号都填在横线上).
分析:根据三角形面积求法以及矩形性质得出S1+S3=
1
2
矩形ABCD面积,以及
PF
PE
=
AB
AD
PF
CD
=
PE
BC
,即可得出P点一定在AC上.
解答:解:如右图,过点P分别作PF⊥AD于点F,PE⊥AB于点E,
∵△APD以AD为底边,△PBC以BC为底边,
∴此时两三角形的高的和为AB,即可得出S1+S3=
1
2
矩形ABCD面积;
同理可得出S2+S4=
1
2
矩形ABCD面积;
∴②S2+S4=S1+S3正确;
当点P在矩形的两条对角线的交点时,S1+S2=S3+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立.故①不一定正确;
③若S3=2S1,只能得出△APD与△PBC高度之比,S4不一定等于2S2;故此选项错误;
④若S1=S2
1
2
×PF×AD=
1
2
PE×AB,
∴△APD与△PBA高度之比为:
PF
PE
=
AB
AD

∵∠DAE=∠PEA=∠PFA=90°,
∴四边形AEPF是矩形,
∴此时矩形AEPF与矩形ABCD位似,
PF
CD
=
PE
BC

∴P点在矩形的对角线上.
故④选项正确,
故答案为:②和④.
点评:此题主要考查了矩形的性质以及三角形面积求法,根据已知得出
PF
CD
=
PE
BC
是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.

查看答案和解析>>

同步练习册答案