精英家教网 > 初中数学 > 题目详情
(2009•遂宁)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

【答案】分析:(1)利用角平分线的性质定理,可以得出AM=ME,∠AMN=∠EMN,再利用SAS可证出:△ANM≌△ENM
(2)利用相似三角形的判定可证出△ABF∽△ACB,从而得出∠ABF=∠C,那么可以得到∠CBF=90°
(3)利用(1)中的结论先证出∠AMN=∠ANM,可以得到AM=ME=EN=AN,从而得出四边形AMEN是菱形,再求出△BND∽△BME,利用比例线段可求出ME的长,再利用菱形的面积公式可计算出菱形的面积.
解答:(1)证明:∵BC是⊙O的直径,
∴∠BAC=90°.
又∵EM⊥BC,BM平分∠ABC,
∴AM=ME,∠AMN=∠EMN.
又∵MN=MN,
∴△ANM≌△ENM.

(2)证明:∵AB2=AF•AC,

又∵∠BAC=∠FAB=90°,
∴△ABF∽△ACB.
∴∠ABF=∠C.
又∵∠FBC=∠ABC+∠FBA=90°,
∴FB是⊙O的切线.

(3)解:由(1)得AN=EN,AM=EM,∠AMN=∠EMN,
又∵AN∥ME,
∴∠ANM=∠EMN,
∴∠AMN=∠ANM,
∴AN=AM,
∴AM=ME=EN=AN.
∴四边形AMEN是菱形.
∵cos∠ABD=,∠ADB=90°,

设BD=3x,则AB=5x,
由勾股定理AD==4x;
∵AD=12,
∴x=3,
∴BD=9,AB=15.
∵MB平分∠AME,
∴BE=AB=15,
∴DE=BE-BD=6.
∵ND∥ME,
∴∠BND=∠BME.
又∵∠NBD=∠MBE,
∴△BND∽△BME.

设ME=x,则ND=12-x,,解得x=
∴S=ME•DE=×6=45.
点评:本题利用了角平分线的性质定理、全等三角形的判定和性质、相似三角形的判定和性质、切线的判定,还有勾股定理以及菱形面积公式等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2009•遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2009•遂宁)如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

查看答案和解析>>

科目:初中数学 来源:2010年四川省成都市石室锦城外国语中考数学模拟试卷(解析版) 题型:解答题

(2009•遂宁)如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

查看答案和解析>>

科目:初中数学 来源:2009年四川省遂宁市中考数学试卷(解析版) 题型:解答题

(2009•遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省遂宁市中考数学试卷(解析版) 题型:解答题

(2009•遂宁)如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

查看答案和解析>>

同步练习册答案