解:(1)如图:可得S
1+S
3=
π
+
π
+S
2-
π
=
π(AC
2+BC
2-AB
2)+S
2,
又∵AB
2=AC
2+BC
2,
∴S
1+S
3=S
2.
(2)根据k的几何意义可得:S
BDO=
|k|=
,S
AOC=
|k|=
,S
OAPB=2-S
BDO-S
AOC=1,
∴S
1+S
3=S
2.
(3)根据平行四边形的性质可得S
2=
S
ABCD,
∴S
1+S
2=
S
ABCD,
∴S
1+S
3=S
2.
(4)
∵AB∥DC,
∴四边形DCBE是平行四边形,
∴DC=BE,BC=DE,∠ABC=∠AED,
∵∠DAB+∠ABC=90°,2DC=AB,
∴DC=AE,∠DAE+∠AED=90°,
∴∠ADE=90°那么AD
2+DE
2=AE
2,
∵S
1=AD
2,S
2=DC
2=AE
2,S
3=BC
2=AE
2,
∴S
2=S
1+S
3.
综上可得(1)(2)(3)(4)四个图形均满足S
2=S
1+S
3.
故答案为(1)(2)(3)(4).
分析:图(1)根据AB
2=AC
2+BC
2,半圆的面积等于
πr
2,可得出S
1、S
2、S
3的关系.
图(2)过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△BOD的面积为矩形面积的一半,即
|k|,从而可判断出S
1、S
2、S
3的关系.
图(3)根据平行四边形的性质可得S
2=
S
ABCD,从而可得出S
1+S
3=S
2.
图(4)过点D作EE∥BC交AB于点E,得到平行四边形DCBE和Rt△ADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边.
点评:本题考查了勾股定理、反比例函数的几何意义及平行四边形的性质,涉及的知识点较多,难度较大,解答本题关键是根据反比例函数的几何意义,平心四边形的性质,梯形的知识分别表示出各图中的S
1、S
2、S
3.