精英家教网 > 初中数学 > 题目详情
16.如图,将边长为2的等边三角形ABC绕点C旋转120°,得到△DCE,连接BD,则BD的长是2$\sqrt{3}$.

分析 连接AD构建菱形ABCD,根据等边三角形的性质得到AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°,推出四边形ABCD为菱形,根据菱形的性质得到∠DBE=$\frac{1}{2}$∠ABC=30°,在Rt△BDE中利用勾股定理即可得出BD的长.

解答 解:连接AD,由题意知,△ABC≌△EDC,∠ACE=120°,
又∵△ABC是等边三角形,
∴AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°,
∴∠ACE+∠ACB=120°+60°=180°,
∴B、C、E三点在一条直线上.
∴AB∥DC,
∴四边形ABCD为菱形,
∴∠DBE=$\frac{1}{2}$∠ABC=30°,
∵∠DBE+∠BDE+∠E=180°,
∴∠BDE=90°.
∵B、C、E三点在一条直线上,
∴BE=4,
∴BD=$\sqrt{B{E}^{2}-D{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查的是等边三角形的性质及旋转的性质,熟知图形旋转后的图形与原图形全等的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论中,正确的个数是(  )
①PM=PN;②$\frac{AM}{AB}=\frac{AN}{AC}$;③△PMN为等边三角形;④当∠ABC=45°时,PN=$\frac{\sqrt{6}}{2}$AN.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在?ABCD中,AC⊥BC,且AD=8,AB=10,则△BOC的面积=12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,正六边形ABCDEF内接于圆O,圆O的半径为6,则这个正六边形的边心距OM和$\widehat{BC}$的长分别为(  )
A.3、$\frac{π}{3}$B.$\frac{3}{2}$$\sqrt{3}$、πC.3$\sqrt{3}$、$\frac{2π}{3}$D.3$\sqrt{3}$、2π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知一次函数y=4x-6与反比例函数y=-$\frac{4}{x}$,那么它们在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.建模是数学的核心素养之一,小明在计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$时利用了如下的正方形模型.

第1次分割,把正方形的面积三等分,阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

由此计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$的结果是$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:20-|-2|+tan45°
(2)解不等式:2x+2>3(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图案中,是中心对称图形但不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.不等式4-x≤2(3-x)的正整数解有(  )
A.1个B.2个C.3个D.无数个

查看答案和解析>>

同步练习册答案