精英家教网 > 初中数学 > 题目详情
14.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=40°,则∠CDA的度数是(  )
A.110°B.115°C.120°D.125°

分析 连接OD,如图,根据切线的性质得∠ODC=90°,利用互余得∠COD=50°,再利用等腰三角形的性质和三角形外角性质可得∠ODA=$\frac{1}{2}$∠COD=25°,然后计算∠ODC+∠ODA即可.

解答 解:连接OD,如图,
∵CD与⊙O相切于点D,
∴OD⊥CD,
∴∠ODC=90°,
∴∠COD=90°-∠C=90°-40°=50°,
∵OA=OD,
∴∠A=∠ODA,
而∠COD=∠A+∠ODA,
∴∠ODA=$\frac{1}{2}$∠COD=25°,
∴∠CDA=∠ODC+∠ODA=90°+25°=115°.
故选B.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为(  )
A.1B.1.5C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.对于a>b>c>0,m>n>0(m、n是正整数),成立的关系式是(  )
A.ambn>bncm>cnamB.ambn>cnam>bncmC.amcn>ambn>bncmD.bnam>cnam>ambn

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在三边互不相等的△ABC中,D、E、F分别是AB、AC、BC边的中点,连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有(  )
A.3对B.4对C.5对D.6对

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:$\frac{x-1}{3}$+x=2-$\frac{x+1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图所示,△ABC中,∠BAC=32°,将△ABC绕点A按顺时针方向旋转55°,对应得到△AB′C′,则∠B′AC的度数为(  )
A.22°B.23°C.24°D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列运算正确的是(  )
A.x3•x4=x12B.(-6x4)÷(-2x2)=3x3C.(-2a22=4a4D.(x-3)2=x2-9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知A(m,n),且满足|m-2|+(n-2)2=0,过A作AB⊥y轴,垂足为B.
(1)求A点坐标.
(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.
(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究$\frac{{c}^{2}}{a+b}$-a-b的值是否为定值?如果是求此定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:
(1)2x2-7x+3=0                 
(2)(x-5)(x+1)=2x-10.

查看答案和解析>>

同步练习册答案