精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过原点O和x轴上另一点A(4,0),顶点的纵坐标是-1,抛物线的对称轴与x轴交于点C,直线y=-2x-1与抛物线交于一点B(-2,m),且与y轴、抛物线的对称轴分别交于点D、E.
精英家教网(1)求m的值与抛物线的解析式.
(2)试判断△BCE的形状并说明理由.
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,试说明理由.
分析:(1)根据直线上点的性质将B点代入直线解析式得出m的值,即可得出二次函数顶点坐标,利用顶点式求出即可;
(2)首先求出E点坐标,再求出CG=3,BG=4,以及BC的长,即可得出△BCE的形状;
(3)作EH⊥y轴于H,可证明△DHE≌△DKB,求出直线CD的解析式,再与二次函数解析式联立求出交点坐标即可.
解答:解:(1)∵点B(-2,m)在直线y=-2x-1上,
∴m=-2×(-2)-1=3,
由对称性知抛物线的顶点坐标为(2,-1),
∴设抛物线的解析式为:y=a(x-2)2-1,
将点O(0,0)代入解析式得:a=
1
4
精英家教网
∴抛物线的解析式为:y=
1
4
(x-2)2-1


(2)△BCE是等腰三角形,
抛物线y=
1
4
(x-2)2-1
的对称轴是x=2,
∴直线y=-2x-1与直线x=2的交点坐标是E(2,-5),
∴CE=5,
如图,作BG⊥直线x=2于点G,则CG=3,BG=4,
在Rt△BCG中,由勾股定理得:BC=
32+42
=5

∴BC=CE,△BCE是等腰三角形.

(3)存在,精英家教网
作EH⊥y轴于H,
∵∠BKD=∠DHE,
∠BDK=∠HDE,
BK=HE=2,
∴△DHE≌△DKB,
∴DB=DE,又CB=CE,
∴CD是线段BE的垂直平分线,
由PB=PE,∴点P在直线CD上,
∴符合条件的点P是直线CD与抛物线的交点
设直线CD的解析式为y=kx+b,
将点D(0,-1),C(2,0)分别代入得:
b=-1
2k+b=0

解得:k=
1
2
,b=-1,
∴直线CD的解析式为y=
1
2
x-1

解方程组:
y=
1
2
x-1
y=
1
4
(x-2)2-1

得:
x1=3+
5
y1=
1+
5
2
x2=3-
5
y2=
1-
5
2

∴符合条件的点P的坐标为(3+
5
1+
5
2
)或(3-
5
1-
5
2
).
点评:此题主要考查了待定系数法求以一次函数解析式以及顶点式求二次函数解析式以及函数交点坐标求法等知识,结合数形结合熟练应用函数交点求法是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-精英家教网2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E,
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)当m=2时,点Q为平移后的抛物线的一动点,是否存在这样的⊙Q,使得⊙Q与两坐标轴都相切?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上的另一点E,顶点为M(2,4),矩形ABCD的顶点A与O重合,AD,AB分别在x,y轴上,且AD=2,AB=3.
(1)求该抛物线对应的函数解析式;
(2)现将矩形ABCD以每秒1个单位长度的速度从左图所示位置沿x轴的正方向匀速平行移动;同时AB上一动点P也以相同的速度从点A出发向B匀速运动,设它们的运动时间为t秒(0≤t≤3),直线AB与抛物线的交点为N,设多边形PNCD的面积为S,试探究S是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案