精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,DE∥BC,若AD=2,DB=4,则$\frac{DE}{BC}$的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 根据DE∥BC,可得:△ADE∽△ABC,所以$\frac{DE}{BC}$=$\frac{AD}{AB}$,然后根据AD=2,DB=4,求出$\frac{DE}{BC}$的值为多少即可.

解答 解:∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{DE}{BC}$=$\frac{AD}{AB}$=$\frac{2}{2+4}$=$\frac{1}{3}$.
故选:C.

点评 此题主要考查了三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.计算:$\frac{2a-3}{a+1}$-$\frac{a-2}{a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:(2a-b)2=4a2-4ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角尺画图:
(1)补全△A′B′C′
(2)画出AC边上的中线BD;
(3)画出AC边上的高线BE;
(4)求△ABD的面积4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.大江东产业集聚区某中学李老师为学校开展的“喜迎G20峰会”演讲比赛购买奖品,回到学校向总务处王主任交账时说:“我买了两类书,共105本,单价分别为8元和12元,买书前我领取了1400元,现还剩余318元,”王主任算了算觉得不对,就说:李老师你搞错了.
(1)请同学们用所学知识解释李老师为什么搞错了?
(2)李老师急忙拿出发票,发现原来还多买了一支水笔,但水笔的单价写得模糊不清,李老师只记得水笔价格为小于8的正整数,则这支水笔单价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.用直角边是a,b斜边是c的四个全等直角三角形(图①)拼成②图.
观察图形并思考,填空:大正方形的面积可表示为:(a+b)2
(1)这个大正方形的面积还可以怎样表示?c2+2ab
(2)于是可列等式为(a+b)2=c2+2ab,将等式化简、整理得a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则$\frac{{S}_{△EFC}}{{S}_{?BFED}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在△ABC与△AED中,$\frac{AE}{AB}$=$\frac{AD}{AC}$=$\frac{1}{2}$,则S△ADE:S△ABC的值为(  )
A.$1:\sqrt{3}$B.1:2C.1:3D.1:4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知$\frac{3}{x}$-$\frac{2}{y}$=3,则$\frac{4x-xy-6y}{5xy+9y-6x}$=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案