精英家教网 > 初中数学 > 题目详情
△ABC三边分别为a、b、c,化简
【答案】分析:根据三角形的三边关系确定个根式的值,再加减计算即可解答.
解答:解:
=b+c-a-(a+c-b)-(b+c-a)
=b-c-a.
点评:本题主要考查二次根式的性质与化简,根据三角形的三边关系确定二次根式的值是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、已知△ABC三边分别为5、6、7,则顺次连接△ABC各边中点所得到的三角形的周长是
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•思明区一模)已知△ABC三边分别为a、b、c,若a=3,b=4,则c的取值范围是
1<c<7
1<c<7
;已知四边形ABCD四边分别为a、b、c、d,若a=3,b=4,d=10,则c的取值范围是
3<c<17
3<c<17

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC三边分别为a、b、c,化简
(a-b-c)2
-
(b-a-c)2
-
(b+c-a)2

查看答案和解析>>

科目:初中数学 来源: 题型:

若△ABC三边分别为a,b,c且满足a2-ab+ac-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

同步练习册答案