分析 根据EA⊥AD,FD⊥AD,得出∠EAD=∠FDB,再根据AB=DC得出AC=BD,最后根据SAS证出△EAC≌△FDB,即可得出∠ACE=∠DBF.
解答 解:∵EA⊥AD,FD⊥AD,
∴∠EAD=∠FDB=90°,
又∵AB=DC,
∴AB+BC=DC+BC,
即AC=BD,
又∵AE=DF,
在△EAC和△FDB中,
$\left\{\begin{array}{l}{AE=DF}\\{∠EAD=∠FDB}\\{AC=BD}\end{array}\right.$,
∴△EAC≌△FDB,
∴∠ACE=∠DBF.
点评 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明角、边相等常常运三角形全等来证明.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com