精英家教网 > 初中数学 > 题目详情
如图,以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,求四边形ACDB的面积.
分析:连接OE,BF,根据切线性质推出OE⊥DC,推出OE是梯形ABDC的中位线,求出OE,即可求出AB,推出四边形BFCD是矩形,得出DC=BF,BD=CF=2,求出AF=6cm,由勾股定理求出BF=8cm,根据梯形面积公式求出即可.
解答:解:连接OE,BF,
∵DC切⊙O于E,
∴OE⊥DC,
∵BD⊥DC,AC⊥DC,
∴BD∥OE∥AC,
∵AO=BO,
∴DE=CE,
即OE是梯形ABDC的中位线,
∴OE=
1
2
(BD+AC)=5cm,
∴AB=2OE=10cm,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵BD⊥DC,AC⊥DC,
∴∠D=∠C=∠BFC=90°,
∴四边形BFCD是矩形,
∴DC=BF,BD=CF=2,
∴AF=AC-CF=6cm,
在Rt△AFB中,AB=10cm,AF=6cm,由勾股定理得:BF=8cm,
即DC=8cm,
故四边形ACDB的面积是
1
2
×(BD+AC)×CD
=
1
2
×(2+8)×8
=40cm2
点评:本题考查了梯形的性质和判定,矩形的性质和判定,切线的性质,圆周角定理,勾股定理,梯形的中位线等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以AB为直径的半圆O上有一点C,过A点作半圆的切线交BC的延长线于点D.
(1)求证:△ADC∽△BDA;
(2)过O点作AC的平行线OF分别交BC,
BC
于E、F两点,若BC=2
3
,EF=1,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若
BC
AC
=1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CE•CP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.若△ADC是边长为1的等边三角形,则PC的长=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以AB为直径的⊙O与AD、DC、BC均相切,若AB=BC=4,则OD的长度为(  )

查看答案和解析>>

同步练习册答案