精英家教网 > 初中数学 > 题目详情
(2011•鞍山)如图,四边形ABCD是平行四边形,以边AB为直径的⊙O经过点C,E是⊙O上的一点,且∠BEC=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若BE=8cm,sin∠BCE=
45
,求⊙O的半径.
分析:(1)连接OC,根据圆周角定理得到∠BOC=2∠BEC=90°,再根据平行四边形的性质可得AB∥CD,则∠OCD=∠BOC=90°,然后根据切线的判定定理即可得到CD与⊙O相切;
(2)连接AE,根据圆周角定理及其推论得∠AEB=90°,∠EAB=∠BCE,而sin∠BCE=
4
5
,则sin∠EAB=
4
5
,根据三角函数的定义易求出AB,即可得到圆的半径.
解答:解:(1)相切.理由如下:
连接OC,如图,
∵∠BEC=45°,
∴∠BOC=90°,
又∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠OCD=∠BOC=90°,
∴OC⊥CD.
∴CD为⊙O的切线;

(2)连接AE,如图,
∵AB为⊙O的直径,
∴∠AEB=90°,
∵∠EAB=∠BCE,sin∠BCE=
4
5

∴sin∠EAB=
4
5

BE
AB
=
4
5

∵BE=8,
∴AB=10,
∴AO=
1
2
AB=5,
∴⊙O的半径为5 cm.
点评:本题考查了切线的判定定理:经过半径的外端点与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、平行四边形的性质以及三角函数的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为
60
60

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图,矩形ABCD的对角线AC⊥OF,边CD在OE上,∠BAC=70°,则∠EOF等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图,?ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则
S四边形EHFG
S平行四边形ABCD
=
2
9
2
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图:方格纸中的每个小方格都是边长为1个单位的小正方形,四边形ABCD和四边形A1B1C1D1的顶点均在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出四边形ABCD沿y轴正方向平移4格得到的四边形A2B2C2D2,并求出点D2的坐标.
(2)画出四边形A1B1C1D1绕点O逆时针方向旋转90°后得到的四边形A3B3C3D3,并求出A2、B3之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图,在平面直角坐标系中,正方形ABCD的边长为
5
,点A在y轴正半轴上,点B在x轴负半轴上,B(-1,0),C、D两点在抛物线y=
1
2
x2+bx+c上.
(1)求此抛物线的表达式;
(2)正方形ABCD沿射线CB以每秒
5
个单位长度平移,1秒后停止,此时B点运动到B1点,试判断B1点是否在抛物线上,并说明理由;
(3)正方形ABCD沿射线BC平移,得到正方形A2B2C2D2,A2点在x轴正半轴上,求正方形ABCD的平移距离.

查看答案和解析>>

同步练习册答案