精英家教网 > 初中数学 > 题目详情
(本小题满分11分)
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线
BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
(1)判断:EN与MF相等(或EN=MF),点F在直线NE上   ······ 3分
(说明:答对一个给2分)
(2)成立.································ 4分
证明:
法一:连结DE,DF.   ··········································································· 5分
∵△ABC是等边三角形,∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE. ················································································ 7分
在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,
∴△DMF≌△DNE. ··············································································· 8分
∴MF=NE.       ··············································································· 9分

法二:
延长EN,则EN过点F.    ······································································ 5分
∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴EF=DF=BF.  
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN.······················· 7分
又∵DM=DN,∠ABM=∠DFN=60°,∴△DBM≌△DFN.································· 8分
∴BM=FN.∵BF=EF, ∴MF=EN.···························································· 9分
法三:
连结DF,NF. ······················································································ 5分

∵△ABC是等边三角形,∴AC=BC=AC.
又∵D,E,F是三边的中点,∴DF为三角形的中位线,∴DF=AC=AB=DB.
又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,∴∠BDM=∠FDN. ………………7分
在△DBM和△DFN中,DF=DB,
DM=DN,∠BDM=∠NDF,∴△DBM≌△DFN.
∴∠B=∠DFN=60°.…………………………………………………………………8分
又∵△DEF是△ABC各边中点所构成的三角形,
∴∠DFE=60°.∴可得点N在EF上,∴MF=EN.………………………………9分
(3)画出图形(连出线段NE), ······························································· 10分
MF与EN相等及点F在直线NE上的结论仍然成立(或MF=NE成立). ················ 11分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题满分4分)
在4×4的正方形网格中,已将图中的四个小正方形图上阴影(如图),请在下列两个图形中各选一个小正方形也图上阴影,使得整个阴影部分组成的图形成轴对称图形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(9分)如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD相交于点0,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F.
(1)求证:当旋转角为90°时,四边形ABEF为平形四边形;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点0顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在下列对称图形中,对称轴的条数最少的图形是(     )
A.B.等边三角形C.正方形D.正六边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图A、B的坐标分别为(2,0),(0,1).将线段平移至,则的值为(  )

A、 2         B、3             C、4               D、5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•宁夏)如图,△ABO的顶点坐标分别为A(1,4)、B(2,1)、O(0,0),如果将△ABO绕点O按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是(  )
A.A′(﹣4,2),B′(﹣1,1)B.A′(﹣4,1),B′(﹣1,2)
C.A′(﹣4,1),B′(﹣1,1)D.A′(﹣4,2),B′(﹣1,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(11·贺州)如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是
A.把△ABC向右平移6格,
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC绕着点A顺时针方向90º旋转,再右平移6格
D.把△ABC绕着点A顺时针方向90º旋转,再右平移6格

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,∠A=30°,∠C′=60°,△ABC 与△A’B’C’关于直线对称,则∠B=_________

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列运动中,属于平移的是( )
A.冷水加热过程中,小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球运动D.随风飘动的风筝在空中的运动

查看答案和解析>>

同步练习册答案