精英家教网 > 初中数学 > 题目详情

如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

解:(1)连接OC
∵OC⊥PD
∴OC=OA=1
在Rt△OPC中
OC=1,OP=2
∴sin∠P==
∴∠P=30°;

(2)在Rt△POC中
OP=2,OC=1
∴PC===
∵OC⊥PD,BD⊥PC
∴△POC∽△PBD
==
==
解得PD=,BD=
∴CD=PD-PC=-=
∵CD2=DE•BD
∴(2=DE•
解得DE=
分析:(1)连接OC,可构造出直角三角形,利用锐角三角函数的定义即可求出∠P的值;
(2)利用△POC∽△OBD,可求出CD,BD的长,再利用切割线定理即可解答.
点评:本题考查的是直角三角形的性质,锐角三角函数的定义及切割线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

查看答案和解析>>

科目:初中数学 来源:2008-2009学年浙江省宁波市六校联考九年级(上)期末数学试卷(解析版) 题型:解答题

如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2004•天津)如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(13)(解析版) 题型:解答题

(2004•天津)如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

查看答案和解析>>

同步练习册答案