精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD是平行四边形(如图),把ABD沿对角线BD翻折180°得到AˊBD.

1利用尺规作出AˊBD.(要求保留作图痕迹,不写作法);

2D AˊBC交于点E,求证:BAˊE≌△DCE.

【答案】见解析

【解析】解:(1)作图如下:

2)证明:四边形ABCD是平行四边形,∴∠A=BAB=DC

ABD沿对角线BD翻折180°得到AˊBD

∴∠Aˊ=AAˊB= AB∴∠Aˊ=BAˊB= DC

∵∠AˊEB=DECBAˊE≌△DCEAAS)。

1)作法:过点ABD的垂线;

以点B 为圆心,AB为半径画弧,交BD的垂线于点Aˊ

连接AˊBAˊD

AˊBD即为所求。

2)由平行四边形和翻折对称的性质,应用AAS即可证明。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y1=ax2+bx+3的图象与x轴相交于点A(3,0)、B(1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y2=mx+n的图象经过B、D两点.

(1)求二次函数的解析式及点D的坐标;

(2)根据图象写出y2>y1时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC的两条外角平分线APCP相交于点PPH⊥ACH.若∠ABC=60°,则下面的结论:①∠ABP=30°②∠APC=60°③△ABC≌△APC④PABC⑤∠APH=∠BPC,其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,求证:EF=BE+FD

2)如图2,四边形ABCD中,∠BAD≠90°AB=AD∠B+∠D=180°,点EF分别在边BCCD上,则当∠EAF∠BAD满足什么关系时,仍有EF=BE+FD,说明理由.

3)如图3,四边形ABCD中,∠BAD≠90°AB=ADAC平分∠BCDAE⊥BCEAF⊥CDCD延长线于FBC=8CD=3,则CE=   .(不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|a+1|=0,b2=9,则a+b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a、b在数轴上的对应点位置如图所示

(1)用“<”连接0、﹣a、﹣b、﹣1
(2)化简:|a|﹣2|a+b﹣1|﹣ |b﹣a﹣1|
(3)若a2c+c<0,且c+b>0,求 + 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列正整数中,属于素数的是(  )

A.2B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列关于矩形的说法中正确的是(  )
A.对角线相等的四边形是矩形
B.矩形的对角线相等且互相平分
C.对角线互相平分的四边形是矩形
D.矩形的对角线互相垂直且平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC的面积为1分别倍长(延长一倍)ABBCCA得到A1B1C1再分别倍长A1B1B1C1C1A1得到A2B2C2按此规律倍长n次后得到的A2017B2017C2017的面积为________

查看答案和解析>>

同步练习册答案