精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE是⊙O的切线;
(2)求直径AB的长.
分析:(1)连接OD,BC,要证明DE是⊙O的切线只要证明OD⊥DE即可,根据已知条件可以证明OD⊥BC;
(2)由(1)可得四边形CFDE为矩形,从而得到CF=DE=6,BC=2CF=12,利用勾股定理即可求得AB的长.
解答:精英家教网(1)证明:如图,连接OD,BC;
∵AB为⊙O的直径,
∴BC⊥AC,
∵DE⊥AC,
∴BC∥DE;
∵D为弧BC的中点,
∴OD⊥BC,
∴OD⊥DE.
∴DE是⊙O的切线.

(2)解:设BC与DO交于点F,
由(1)可得四边形CFDE为矩形;
∴CF=DE=6,
∵OD⊥BC,
∴BC=2CF=12,
在Rt△ABC中,
AB=
BC2+AC2
=
122+162
=20
点评:本题主要考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E.
(1)求证:DE是⊙O的切线.
(2)若OB=5,BC=6,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB、AC是⊙O的两条弦,且AB=AC,若∠BOC=100°,则∠BAO=
 
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•宝山区二模)如图,已知AB、AC是⊙O的两条切线,切点分是点B、点C,∠BAC=60°,又⊙O的半径为2cm,则点A与点O的距离为
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB:AC=AD:AE,∠BAD=∠CAE.求证:∠ABC=∠ADE.

查看答案和解析>>

同步练习册答案