精英家教网 > 初中数学 > 题目详情
设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-l,0)、B(4,0),与y轴交于点C(0,2).
(1)求抛物线的解析式:
(2)问抛物线上是否存在一点M,使得S△ABM=2S△ABC?若存在,求出点M的坐标;若不存在,请说明理由.
(3)已知点D(1,n)在抛物线上,过点A的直线y=-x-1交抛物线于另一点E.
①求tan∠ABD的值:
②若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.
(1)把三点分别代入后求解可得:
a=-
1
2
,b=
3
2
,c=2;
代入后得此函数解析式为:y=-
1
2
x2+
3
2
x+2


(2)假设存在这样的点M,使得S△ABM=2S△ABC
假设点M的坐标为:(xM,yM),
所以有:
1
2
•AB•h=2•
1
2
•AB•2,
其中h是三角形ABM AB 边上的高等于yM的绝对值,解得h=4,
二次函数解析式y=-
1
2
x2+
3
2
x+2
的最大值是3
1
8
<4,
故x轴的上方不存在这样的M点,
所以有yM=-4,即有y=-
1
2
x2+
3
2
x+2
=-4,
解得:x=
3+
57
2
或者
3-
57
2

即M点的坐标为(
3+
57
2
,-4
)或者(
3-
57
2
,-4
);

(3)①D(1,n)代入原函数解析式得:n=3
所以D点坐标为(1,3),
过点D作垂线DF⊥x轴,可得tan∠ABD=
3
4-1
=1

②由y=-x-1和y=-
1
2
x2+
3
2
x+2
;联立求解得:
x=-1 y=0 或者 x=6 y=-7;
所以点E的坐标为(6,-7),
过点E作EH⊥x轴于H,则H(6,0),
所以AH=EH=7,∠EAH=45°,又因为tan∠ABD=
3
4-1
=1
,故∠DBF=45°
所以∠EAH=∠DBF,且有∠DBH=135°
90°<∠EBA<135°,则点P只能在点B的左侧,即有以下两种情况:
1)△DBP△EAB,则有:
BP
AB
=
BD
AE

所以BP=
AB•BD
AE
=
15
7
,故OP=4-
15
7
=
13
7

所以点P坐标为(
13
7
,0

2)△DBP△BAE,则有
BP
AE
=
BD
AB

所以BP=
AE•BD
AB
=
42
5

OP=
42
5
-4=
22
5

所以点P的坐标为(-
22
5
,0
),
综上所述点P坐标为(
13
7
,0
)或者(-
22
5
,0
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n.
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.

(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)(x<0),连接BP,过P点作PC⊥PB交过点A的直线a于点C(2,y)
(1)求y与x之间的函数关系式;
(2)当x取最大整数时,求BC与PA的交点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=
1
2
x+b(b<k)与此图象有两个公共点时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2一g一•昆明)在平面直角坐标系v,抛物线经过O(一,一)、A(4,一)、E(九,-
2
)三点.
(g)求此抛物线的解析式;
(2)以OA的v点M为圆心,OM长为半径作⊙M,在(g)v的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为九一°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题v的结果可保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;
(2)若与x轴的两个交点为A、B,与y轴交于点C.在该抛物线上找一点D,使得△ABC与△ABD全等,求出D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,?ABCO的顶点O在原点,点A的坐标为(-2,0),点B的坐标为(0,2),点C在第一象限.
(1)直接写出点C的坐标;
(2)将?ABCO绕点O逆时针旋转,使OC落在y轴的正半轴上,如图②,得□DEFG(点D与点O重合).FG与边AB、x轴分别交于点Q、点P.设此时旋转前后两个平行四边形重叠部分的面积为S0,求S0的值;
(3)若将(2)中得到的?DEFG沿x轴正方向平移,在移动的过程中,设动点D的坐标为(t,0),?DEFG与?ABCO重叠部分的面积为S.写出S与t(0<t≤2)的函数关系式.(直接写出结果)

查看答案和解析>>

同步练习册答案