精英家教网 > 初中数学 > 题目详情

【题目】1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1两点都在格点上,连结,请完成下列作图:

(1)为对角线在图1中作一个正方形,且正方形各顶点均在格点上.

(2)为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.

(3)为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.

【答案】(1)见解析;(2)见解析;(3)见解析.

【解析】

见详解.

解:(1)根据正方形的性质先作垂直于且与长度相等的另一条对角线,则得到下图的正方形为所求作的正方形.

(2)假设矩形长和宽分别为,则可得,则长应为,宽应为,则下图的矩形为所求作的矩形.

(3) 根据平行四边形面积公式,可得下图的平行四边形为所求作的平行四边形.(画出下列一种即可)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m元的价格购进100个手机充电宝,然后每个加价n元到市场出售(结果用含mn的式子表示)

(1)求售出100个手机充电宝的总售价为多少元?

(2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.(:售价的8折即按原售价的80%出售)

①她的总销售额是多少元?

②假如不采取降价销售,且也全部售完,她将比实际销售多盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.

(1)求证:△AEF≌△DEB;

(2)求证:四边形ADCF是菱形;

(3)若AC=4,AB=5,求菱形ADCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90ACBC,将ABC绕点C逆时针旋转α角(0α90)得到A1B1C,连结BB1.CB1ABDA1B1分别交ABACEF,

1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(ABCA1B1C全等除外);

2)当BB1D是等腰三角形时,求α.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.

(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;

(2)求小彬家与学校之间的距离;

(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),BPE=ACB,PE交BO于点E,过点B作BFPE,垂足为F,交AC于点G.

(1) 当点P与点C重合时(如图).求证:BOG≌△POE;(4分)

(2)通过观察、测量、猜想:= ,并结合图证明你的猜想;(5分)

(3)把正方形ABCD改为菱形,其他条件不变(如图),若ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;

(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.

(1)求这条抛物线的表达式和点B的坐标;

(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示AMB的余切值;

(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.

查看答案和解析>>

同步练习册答案