精英家教网 > 初中数学 > 题目详情

【题目】如图,在梯形ABCD中, ,,求DC的长.

【答案】解:如图

过A作AE⊥BC于E,过D作DF⊥BC于F,
则∠AEF=∠DFE=∠DFC=∠AEB=90°,AE∥DF,
∵AD∥BC,
∴四边形AEFD是矩形,
∴AE=DF,AD=EF=
在Rt△BAC中,∠B=45°,BC=
∴∠ACB=45°=∠B,
∴AB=AC,
由勾股定理得:AB=AC=4,
△BAC的面积S=AB×AC=BC×AE,
∴AE=
DF=AE=
∵AB=AC,AE⊥BC,
∴BE=CE=BC=
∴CF=-=
在Rt△DFC中,DF=,CF= , 由勾股定理得:CD=
【解析】过A作AE⊥BC于E,过D作DF⊥BC于F,得出矩形AEFD,求出AE=DF,AD=EF,求出AE、EC的长,求出CF长,即可求出答案.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,6).

(1)求二次函数的解析式;
(2)画出它的图象;
(3)写出它的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:

(1)11114

(2)(22.84)(38.57)(37.16)(32.57)

(3)124

(4)(36)(28)(125)(4)(53)(40)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是( )
A.∠BDC =∠BCD
B.∠ABC =∠DAB
C.∠ADB =∠DAC
D.∠AOB =∠BOC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,,点边上以每秒的速度从点向点运动,点边上,以每秒的速度从点出发,在间往返运动,两个点同时出发,当点到达点时停止(同时点也停止).设运动时间为秒,当为何值时,以点为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在⊙O中. AE直径,AD是弦,B为AE延长线上--点,作BC⊥AD,与AD延长线交于点C.且∠CBD=∠A.

(1)判断直线BD与⊙0的位置关系,并证明你的结论;
(2)若∠A=30 ,OA=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求证:四边形BCDE是矩形.

查看答案和解析>>

同步练习册答案