精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90º, D是AC上的一点,且AD=BC,DEAC于D,∠EAB=90º.
求证:AB=AE.
证明见解析.

试题分析:由垂直的性质就可以得出∠B=∠EAD,再根据AAS就可以得出△ABC≌△EAD,就可以得出AB=AE.
试题解析:∵∠EAB=90°,∴∠EAD+∠CAB=90°.
∵∠ACB=90°,∴∠B+∠CAB=90°.∴∠B=∠EAD.
∵ED⊥AC,∴∠EDA=90°.∴∠EDA=∠ACB.
在△ACB和△EDA中,∠B=∠EAD,∠C=∠EDA,BC=AD,
∴△ACB≌△EDA(AAS),
∴AB=AE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB =∠D.求证:BC =ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C处.DF=4米,短墙底部D与树的底部A间的距离为2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M (点M在DE上)距D点3米.
(参考数据:sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少再要飞多少米(精确到0.1米)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.
(1)求证:DC是⊙O的切线;
(2)若AD=l,BC=4,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,若两个多边形相似,则x=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是(  )
A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=" CF" =8.

(l)求∠BDF的度数;
(2)求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,正边形的一个内角为,则边数的值是               .

查看答案和解析>>

同步练习册答案