【题目】已知二次函数,当时,恒有;关于的方程的两个实数根的倒数和小于.求的取值范围.
【答案】
【解析】
①y=x2+(m+3)x+m+2=(x+1)(x+m+2),再由当1<x<3时,恒有y<0,可得出m的范围;
②利用根与系数的关系,得出x1+x2及x1x2的值,根据<,也可得出m的取值范围,两个范围结合可得出答案.
①由题意可得,方程x2+(m+3)x+m+2=0与x轴有两个交点,
故有△>0,即(m+3)24(m+2)>0,
解得:m≠1,
又因为y=x2+(m+3)x+m+2=(x+1)(x+m+2),
当y<0时,x可取两个范围:1<x<m2或m2<x<1,
而由题意得,当1<x<3时,恒有y<0,
故可得,当y<0时,x的取值范围为:1<x<m2,
也可得出m2≥3,
解得:m≤5;
②由题意得,方程x2+(m+3)x+m+2=0有实数根,
故有△≥0,即(m+3)24(m+2)≥0,
解得:m可取任意实数,
又因为==<,
解得:m<12.
综合①②可得:m<12.
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).
其中正确结论的序号有 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要在宽为22米的大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,求路灯的灯柱BC高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A、B两点.
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是( )
A.8B.4+4C.8+D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有点A(1,5),B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.
(1)若P为AB中点,画出线段CD,保留作图痕迹;
(2)若D(6,2),则P点的坐标为 ,C点坐标为 .
(3)若C为直线上的动点,则P点横、纵坐标之间的关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”
译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)
你的计算结果是:出南门几何步而见木( )
A.300步B.315步C.400步D.415步
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com