A. | (4030,1) | B. | (4029,-1) | C. | (4033,1) | D. | (4031,-1) |
分析 作P1⊥x轴于H,利用等腰直角三角形的性质得P1H=$\frac{1}{2}$AB=1,AH=BH=1,则P1的纵坐标为1,再利用旋转的性质易得P2的纵坐标为-1,P3的纵坐标为1,P4的纵坐标为-1,P5的纵坐标为1,…,于是可判断P1017的纵坐标为1,而横坐标为2017×2-1=4033,所以P1017(4033,1).
解答 解:作P1⊥x轴于H,
∵A(0,0),B(2,0),
∴AB=2,
∵△AP1B是等腰直角三角形,
∴P1H=$\frac{1}{2}$AB=1,AH=BH=1,
∴P1的纵坐标为1,
∵△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,
∴P2的纵坐标为-1,P3的纵坐标为1,P4的纵坐标为-1,P5的纵坐标为1,…,
∴P1017的纵坐标为1,横坐标为2017×2-1=4033,
即P1017(4033,1).
故选C.
点评 本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等腰直角三角形的性质.
科目:初中数学 来源: 题型:选择题
A. | △ACD的外心 | B. | △ABC的外心 | C. | △ACD的内心 | D. | △ABC的内心 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com