精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则abc______0(填“>”或“<”)
观察图形发现,抛物线的开口向下,
∴a<0,
∵顶点坐标在第一象限,
∴-
b
2a
>0,
∴b>0,
而抛物线与y轴的交点在y轴的上方,
∴c>0,
∴abc<0,
故答案为:<
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是坐标原点,A(3,0)、B(m,
6
5
)是以OA为直径的⊙M上的两点,且tan∠AOB=
1
2
,BH⊥x轴,垂足为H
(1)求H点的坐标;
(2)求图象经过A、B、O三点的二次函数的解析式;
(3)设点C为(2)中的二次函数图象的顶点,问经过B、C两点的直线是否与⊙M相切,请说明理由.
注:抛物线y=ax2+bx+c(c≠0)的顶点为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.
(1)若t=-4,求抛物线的解析式,并指出此时抛物线的开口方向;
(2)如图,抛物线y=ax2+bx的对称轴经过点A,观察图象并回答:
y的最小值=______;
t的值=______;
当x>-3时,y随x的增大而______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价一元,每星期要少卖出10件.设该商品定价为每件x元.
(1)该商店每星期的销售量是______件(用含x的代数式表示);
(2)设商场每星期获得的利润为y元,求y与x的函数关系式;
(3)该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+(
4
3
+3a)x+4与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M是以点M(4,0)为圆心,5个单位长度为半径的圆.⊙M与x轴交于点A、B(A在B的左侧),⊙M与y轴的正半轴交于点C.
求:(1)点A、B、C的坐标;
(2)经过点A、B、C三点的抛物线的解析式.

查看答案和解析>>

同步练习册答案