精英家教网 > 初中数学 > 题目详情
(2008•攀枝花)已知:如图,EF为梯形ABCD的中位线,AD=AN,连接DN交EF于点M,AM的延长线交BC于点H,连接DH、NH
(1)给出以下结论:
①AH⊥DN;②AD⊥DH;③HM=MN;④DH=NH
你认为正确的结论是
①④
①④

(2)请任意选择(1)中的一个正确结论加以证明.
分析:(1)①④正确;
(2)首先根据中位线的性质可得EF∥AB,进而可得△DEM∽△DAN,再根据对应边成比例可得到M为DN中点,再有AD=AN,可根据等腰三角形的性质可得AH⊥DN;再根据线段垂直平分线的性质可证出④正确.
解答:解:(1)①④正确;

(2)∵EF为梯形ABCD的中位线,
∴EF∥AB,
∴△DEM∽△DAN,
DE
DA
=
DM
DN

∵E为AD中点,
DE
AD
=
1
2

DM
DN
=
1
2

∴M为DN中点,
∵AD=AN,
∴AH⊥DN,故①正确;
∵AH⊥DN,M为DN中点,
∴HM是DN的垂直平分线,
∴DH=HN,故④正确.
点评:此题主要考查了梯形的中位线,以及等腰三角形的性质,线段的垂直平分线,关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2008•攀枝花)从数字3、4、5中任意抽取两个数字组成一个两位数,则这个数恰为奇数的可能性为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•攀枝花)已知⊙O1和⊙O2的半径分别是方程x2-5x+4=0的两根,O1O2=3,则两圆位置关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2008•攀枝花)阅读下面五个命题,把正确命题的序号全部填在横线处:
①五角星是中心对称图形;
②对角线互相垂直相等的四边形是正方形;
③菱形四边中点的连线组成的四边形是矩形;
④垂直于同一直线的两条直线互相平行;
⑤在一个确定的等腰三角形底边上任意的一点(端点除外)到两腰距离之和是一个定值.
正确命题的序号
③⑤
③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•攀枝花)在向汶川地震灾区执行空投任务中,一架飞机在空中沿着水平方向向空投地O处上方直线飞行,飞行员在A点测得O处的俯角为30°,继续向前飞行1千米到达B处测得O处的俯角为60°.飞机继续飞行0.1千米到达E处进行空投,已知空投物资在空中下落过程中的轨迹是抛物线,若要使空投物资刚好落在O处.
(1)求飞机的飞行高度.
(2)以抛物线顶点E为坐标原点建立直角坐标系,求抛物线的解析式.(所有答案可以用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•攀枝花)某校服生产厂家计划在年底推出80套两款新校服A和B,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如下表:
A B
成本价(元/套) 250 280
售价(元/套) 300 340
(1)该厂家有哪几种生产新校服的方案可供选择?
(2)该厂家采用哪种生产方案可以获得最大的利润?最大利润为多少?
(3)经市场调查,年底前每套B款校服售价不会改变,而每套A款校服的售价将会提高m元(m>0),且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?

查看答案和解析>>

同步练习册答案