相关习题
 0  113628  113636  113642  113646  113652  113654  113658  113664  113666  113672  113678  113682  113684  113688  113694  113696  113702  113706  113708  113712  113714  113718  113720  113722  113723  113724  113726  113727  113728  113730  113732  113736  113738  113742  113744  113748  113754  113756  113762  113766  113768  113772  113778  113784  113786  113792  113796  113798  113804  113808  113814  113822  366461 

科目: 来源: 题型:

的相反数是(  )

A.       B.         C.5        D.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线                  与y轴交于C点,与x轴交于AB两点,点A的坐标是(-1,0),O是坐标原点,且

(1)求抛物线的函数表达式;

(2)直接写出直线BC的函数表达式;

(3)如图1,Dy轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).

求:①st之间的函数关系式;

        ②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.

(4)如图2,点P(1,k)在直线BC上,点Mx轴上,点N在抛物线上,是否存在以AMNP为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知:点CAD在同一条直线上,∠ABC=∠ADE=α,线段 BDCE交于点M

(1)如图1,若AB=ACAD=AE

①问线段BDCE有怎样的数量关系?并说明理由;

②求∠BMC的大小(用α表示);

(2)如图2,若AB= BC=kACAD =ED=kAE

 则线段BDCE的数量关系为          ,∠BMC=          (用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.

则∠BMC=          (用α表示).

 

图1

 

图2

 
 


查看答案和解析>>

科目: 来源: 题型:

甲、乙两工程队同时修筑水渠,且两队所修水渠总长度相等.右图是两队所修水渠长度y(米)与修筑时间x(时)的函数图像的一部分.请根据图中信息,解答下列问题:

(1)①直接写出甲队在0≤x≤5的时间段内,yx之间的函数关系式         

 ②直接写出乙队在2≤x≤5的时间段内,yx之间的函数关系式         

(2)求开修几小时后,乙队修筑的水渠长度开始超过甲队?

(3)如果甲队施工速度不变,乙队在修筑5小时后,施工速度因故减少到5米/时,结果两队同时完成任务,求乙队从开修到完工所修水渠的长度为多少米?

 


查看答案和解析>>

科目: 来源: 题型:

南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?

(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,

sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

科目: 来源: 题型:

暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?

查看答案和解析>>

科目: 来源: 题型:

如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且 BC=CD,弦AD的延长线交切线PC于点E,连接BC

(1)判断OBBP的数量关系,并说明理由;

(2)若⊙O的半径为2,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:

(1)该顾客至少可得___元购物券,至多可得___元购物券;

(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.

查看答案和解析>>

科目: 来源: 题型:

某小型企业实行工资与业绩挂钩制度,工人工资分为ABCD四个档次.小明对该企业三月份工人工资进行调查,并根据收集到的数据,绘制了如下尚不完整的统计表与扇形统计图.

档次

工资(元)

频数(人)

频率

A

3000

20

 

B

2800

 

0.30

C

2200

 

D

2000

10

 
 


根据上面提供的信息,回答下列问题:

(1)求该企业共有多少人?

(2)请将统计表补充完整;

(3)扇形统计图中“C档次”的扇形所对的圆心角是        度.

 

查看答案和解析>>

科目: 来源: 题型:

已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,  每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;

(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.

 


查看答案和解析>>

同步练习册答案