科目: 来源: 题型:
【考点】全等三角形的判定与性质;直角梯形;旋转的性质.
【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.
【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,
∵AD∥BC,∠C=90°,
∴∠C=∠ADC=∠ANC=90°,
∴四边形ANCD是矩形,
∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,
∴BN=9-5=4,
∵∠M=∠EAB=∠MAN=∠ANB=90°,
∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,
∴∠EAM=∠NAB,
∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,
∴△EAM≌△BNA(AAS),
∴EM=BN=4,
∴△ADE的面积是×AD×EM=×5×4=10.
故选A.
【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.
查看答案和解析>>
科目: 来源: 题型:
【考点】切线的性质;圆周角定理.
【专题】计算题.
【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.
【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),
连接BD,AD,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圆周角∠ADB与圆心角∠AOB都对弧AB,
∴∠ADB=∠AOB=70°,
又∵四边形ACBD为圆内接四边形,
∴∠ADB+∠ACB=180°,
则∠ACB=110°.
故选B。
【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.
查看答案和解析>>
科目: 来源: 题型:
【考点】概率公式;一次函数图象与系数的关系.
【分析】由于y=kx+1,所以当直线不经过第三象限时k<0,由于一共有3个数,其中小于0的数有2个,容易得出事件A的概率为.
【解答】∵y=kx+1,当直线不经过第三象限时k<0,
其中3个数中小于0的数有2个,因此概率为.
故选C.
【点评】本题考查一次函数的性质和等可能事件概率的计算.用到的知识点为:概率=所求情况数与总情况数之比.当一次函数y=kx+b不经过第三象限时k<0.
查看答案和解析>>
科目: 来源: 题型:
如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),则关于x的不等式x+m>kx-1的解集在数轴上表示正确的是
A. B. C. D.
【考点】一次函数与一元一次不等式;在数轴上表示不等式的解集.
【分析】根据图象和交点坐标得出关于x的不等式x+m>kx-1的解集是x>-1,即可得出答案.
【解答】∵直线y1=x+m与y2=kx-1相交于点P(-1,1),
∴根据图象可知:关于x的不等式x+m>kx-1的解集是x>-1,
在数轴上表示为:。
故选B.
查看答案和解析>>
科目: 来源: 题型:
在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。则关于这组数据的说法不正确的是
A.极差是3 B.平均数是8 C.众数是8和9 D.中位数是9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com