科目: 来源: 题型:
如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2∶3的两部分,请求出P点的坐标.
查看答案和解析>>
科目: 来源: 题型:
如图,已知∠=90°,线段AB=10,若点A在上滑动,点B随着线段AB在射线 上滑动,(A、B与O不重合),Rt△AOB的内切⊙K分别与OA、OB、AB切于E、F、P.
(1)在上述变化过程中:Rt△AOB的周长,⊙K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由;
(2)当AE = 4时,求⊙K的半径r;
查看答案和解析>>
科目: 来源: 题型:
.已知,如图,在四边形ABCD中,∠B +∠D =180°,AB=AD,E、F分别是线段BC、CD上的点,且B E + FD= EF。
求证:∠EAF =∠BAD
查看答案和解析>>
科目: 来源: 题型:
如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=6cm.
(1)求证:AC是⊙O的切线;
(2)求⊙O的半径长;
(3)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留).
查看答案和解析>>
科目: 来源: 题型:
已知:二次函数的表达式为.
(1)写出这个函数图象的对称轴和顶点坐标;并画出图像。
(2)求图象与轴的交点坐标;
(3)观察图象,指出使函数值y>时自变量x的取值范围
查看答案和解析>>
科目: 来源: 题型:
如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.
⑴求∠DCE的度数;
⑵当AB=4,AD∶DC=1∶3时,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com