科目: 来源: 题型:
某种乐器有10个孔,依次记作第1孔,第2孔,……,第10孔,演奏时,第n孔与其音色的动听指数D之间满足关系式D=n2+kn+90,该乐器的最低动听指数为4k+106,求常数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
如图,将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析式为:y = − x + 4.
(1)点C的坐标是( ▲ , ▲ );
(2)若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P,求△OBP的面积;
(3)在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.
查看答案和解析>>
科目: 来源: 题型:
已知:抛物线的顶点为P,与x轴的交点为A,B(点A在点B的左侧).
(1) 当,直接写出与抛物线有关的三条正确结论;
(2)若抛物线经过原点,且△ABP为直角三角形.求a,b的值;
(3)若将抛物线沿轴翻折得抛物线,抛物线的顶点为Q,则以A,P,B,Q为顶点的四边形能否为正方形?若能,请求出a,b满足的关系式;若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系中,点为二次函数与反比例函
数在第一象限的交点,已知该抛物线交轴正
负半轴分别于点、点,交轴负半轴于点,且.
(1)求二次函数和反比例函数的解析式;
(2)已知点为抛物线上一点,且在第三象限,顺次连接点,求四
边形面积的最大值;
(3)在(2)中四边形面积最大的条件下,过点作轴于点,交
的延长线于点,为线段上一点,且点到直线的距离等于线段
的长,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.
(1)求线段AC的长度;
(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
查看答案和解析>>
科目: 来源: 题型:
如图,已知二次函数的图像经过点B(1,2),与轴的另一个交点为A,点B关于抛物线对称轴的对称点为C,过点B作直线BM⊥轴垂足为点M.
(1)求二次函数的解析式;
(2)在直线BM上有点P(1,),联结CP和CA,判断直线CP与直线CA的位置关系,并说明理由;
(3)在(2)的条件下,在坐标轴上是否存在点E,使得以A、C、P、E为
顶点的四边形为直角梯形,若存在,求出所有满足条件的点E的坐标;
若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com