相关习题
 0  117234  117242  117248  117252  117258  117260  117264  117270  117272  117278  117284  117288  117290  117294  117300  117302  117308  117312  117314  117318  117320  117324  117326  117328  117329  117330  117332  117333  117334  117336  117338  117342  117344  117348  117350  117354  117360  117362  117368  117372  117374  117378  117384  117390  117392  117398  117402  117404  117410  117414  117420  117428  366461 

科目: 来源: 题型:

【问题】如图甲,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
【探究】解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的边长为
 

【拓展应用】
如图丙,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

第一步,在一张矩形的纸片的一端,设MN=2,利用图1的方法折出一个正方形,然后把纸片展平.
第二步,如图2,把这个正方形折成两个相等的矩形,然后把纸片展平.
第三步,如图3,折出内侧矩形的对角线AB,并把它折到图3中所示的AD处.则AD=
 
,CD=
 

第四步,展平纸片,按照所得的D点折出DE,矩形BCDE就是艺术大师们所说的黄金矩形.则黄金矩形的宽与长之比
 
(结果可用根号表示).
第五步,如图5,作NP⊥BD于P,交BC于F,则CF=
 

精英家教网

查看答案和解析>>

科目: 来源: 题型:

如图,Rt△ABC中,∠C=90°,过点C作CD⊥AB于点D,小明把一个三角板的直角顶点放置在点D处两条直角边分别交线段BC于点E,交线段AC于点F,在三角板绕着点D旋转的过程中他发现了线段BE,CE,CF,AF之间存在着某种数量关系.
精英家教网
(1)旋转过程中,若点E是BC的中点,点F也是AC的中点吗?请说明理由;
(2)旋转过程中,若DE⊥BC,那么
BE
CE
=
CF
AF
成立吗?请说明理由;
(3)旋转过程中,若点E是BC上任意一点,(2)中的结论还成立吗?

查看答案和解析>>

科目: 来源: 题型:

已知,Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,∠CAB=30°,∠DAE=60°,AD=3,AB=6
3
,且AB,AD在同一直线上,把图1中的△ADE沿射线AB平移,记平移中的△ADE为△A′DE(如图2),且当点D与点B重合时停止运动,设平移的距离为x.
(1)当顶点E恰好移动到边AC上时,求此时对应的x值;
(2)在平移过程中,设△A′DE与Rt△ABC重叠部分的面积为S,请直接写出S与x之间的函数关系式以及相应的自变量x的取值范围;
(3)过点C作CF∥AE交AB的延长线于点F,点M为直线BC上一动点,连接FM,得到△MCF,将△MCF绕点C逆时针旋转60°,得到△M′CF′(M的对应点为M′,F的对应点为F′),问△FMM′的面积能否等于
3
?若能,请求AM′的长度,若不能,请说明理由.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

如图1,梯形ABCD中,AD∥BC,∠ABC=90°,且AD=1,AB=BC=2,对角线AC和BD相交于点O.点E在AB上,点F在CB延长线上,连结EF,且BE=BF.精英家教网
(1)连结AF,CE,则线段AF与CE的位置关系是
 
,数量关系是
 

(2)将图1中的△EBF绕点B逆时针方向旋转旋转α角(0°<α<90°),连结AF、CE.试在图2中画出旋转后的图形,并判断此时(1)中的两个结论是否成立,写出你的猜想并加以证明;
(3)将图1中的△EBF绕点B逆时针旋转,使到一边BF落在线段BO上,此时△EBF的一边EF与BC交于点M,连结AF、CE.试在图3中画出旋转后的图形,并解答下列问题:
①此时(1)中的两个结论是否成立?(直接写出你的猜想,不必证明.)
②已知OF=
5
6
,试求BM的长.

查看答案和解析>>

科目: 来源: 题型:

如图,A、B是直线a上的两个定点,点C、D在直线b上运动(点C在点D的左侧),AB=CD=6cm,已知a∥b,连接AC、BD、BC,把△ABC沿BC折叠得△A1BC.
问题1:当A1、D两点重合时,则AC=
 
cm;
问题2:当A1、D两点不重合时,连接A1D,可探究发现A1D∥BC,
下面是小明的思考:
(1)将△ABC沿BC翻折,点A关于直线BC的对称点为A1,连接AA1交BC所在直线于点M,由轴对称的性质,得AM=A1 M,这一关系在变化过程中保持不变;
(2)因为四边形ABCD是平行四边形,设对角线的交点是O,易知AO=DO,这一关系在变化过程中也保持不变.
请你借助于小明的思考,说明AD1∥BC的理由;
问题3:当A1、D两点不重合时,若直线a、b间的距离为
5
cm,且以点A1、C、B、D为顶点的四边形是矩形,求AC的长.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?
精英家教网
实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

已知∠AOB=90°,在∠AOB的平分线OM上有一点C,OC=
2
,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.精英家教网
(1)当三角板绕点C旋转到CD与OA垂直时(如图1),求证:OD+OE=2.
(2)当三角板绕点C旋转到CD与OA不垂直时:
①在图2这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE之间又有怎样的数量关系?请写出你的猜想,并给予证明.
②在图3这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE之间又有怎样的数量关系?请直接写出你的猜想,并给予证明.

查看答案和解析>>

科目: 来源: 题型:阅读理解

阅读下面的材料:
小明在研究中心对称问题时发现:
如图1,当点A1为旋转中心时,点P绕着点A1旋转180°得到P1点,点P1再绕着点A1旋转180°得到P2点,这时点P与点P2重合.
如图2,当点A1、A2为旋转中心时,点P绕着点A1旋转180°得到P1点,点P1绕着点A2旋转180°得到P2点,点P2绕着点A1旋转180°得到P3点,点P3绕着点A2旋转180°得到P4点,小明发现P、P4两点关于点P2中心对称.
精英家教网精英家教网
(1)请在图2中画出点P3、P4,小明在证明P、P4两点关于点P2中心对称时,除了说明P、P2、P4三点共线之外,还需证明
 

(2)如图3,在平面直角坐标系xOy中,当A1(0,3)、A2(-2,0)、A2(2,0)为旋转中心时,点P(0,4)绕着点A1旋转180°得到P1点;点P1绕着点A2旋转180°得到P2点;点P2绕着点A3旋转180°得到P3点;点P3绕着点A1旋转180°得到点p4点….继续如此操作若干次得到点P5、P6、…,则点P2的坐标为
 
,点P2017的坐标为
 

查看答案和解析>>

科目: 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使A与C重合,这时DE为折底,△CBE为等腰三角形,再将纸片沿△CBE的对称轴EF折叠,这时得到一个折叠而成的无缝隙、无重叠的矩形,这个矩形称为“折得矩形”.精英家教网
(1)如图②,正方形网格中的△ABC能折成“折得矩形”吗?,若能,请在图②中画出折痕;
(2)如图③,正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且由△ABC折成的“折得矩形”为正方形;
(3)如果一个三角形折成的“折得矩形”为正方形,那么它必须满足的条件是
 

(4)若一个四边形能折成“折得矩形”,那么它必须满足的条件是
 

查看答案和解析>>

同步练习册答案