科目: 来源:2012届浙江湖州中考模拟数学试卷(带解析) 题型:解答题
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
类型 | 占地面积/m2 | 可供使用幢数 | 造价(万元) |
A | 15 | 18 | 1.5 |
B | 20 | 30 | 2.1 |
查看答案和解析>>
科目: 来源:2012届湖南衡阳市初中学业水平模拟考试数学卷(带解析) 题型:解答题
我市某西瓜产地组织40辆汽车装运完A、B、C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满,根据下表提供的信息,解答以下问题:
(1)设装运A种西瓜的车数为x,装运B种西瓜的车数为y,求y与x的函数关系式。
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案。
(3)若要使此次销售获利达到预期利润25万元,应采取哪样的车辆安排方案?。
查看答案和解析>>
科目: 来源:2011-2012学年重庆市沙坪坝区八年级下学期半期调研测试数学卷(带解析) 题型:解答题
如图①,在矩形ABCD中,AB=l0cm,BC=8cm,点P从A发,沿路线运动,到D停止;点从出发,沿路线运动,到停止.若点同时出发,点的速度为点的速度为,秒时点点同时改变速度,点的速度变为bcm/s,点的速度变为.图②是点出发x秒后的面积与的函数关系图象;图③点出发秒后的面积的函数关系图象.
(1)观察下图,求、c的值及点的速度的值;
(2)设点离开点的路程为点到还需走的路程为请分别写出动点改变速度后与出发后的运动时间的函数关系式,并求出相遇时x的值;
(3)请直接写出当点出发多少秒时,点点在运动路线上相距的路程为25cm.
查看答案和解析>>
科目: 来源:2011-2012学年重庆市沙坪坝区八年级下学期半期调研测试数学卷(带解析) 题型:解答题
某商场计划采购甲、乙、丙三种型号的“格力”牌空调共25台.三种型号的空调进价和售价如下表:
商场计划投入总资金5万元,所购进的甲、丙型号空调数量相同,乙型号数量不超过甲型号数量的一半.若设购买甲型号空调台,所有型号空调全部售出后获得的总利润为元.
(1)求与之间的函数关系式.
(2)商场如何采购空调才能获得最大利润?
(3)由于原材料上涨,商场决定将丙型号空调的售价提高元(),其余型号售价不变,则商场又该如何采购才能获得最大利润?
查看答案和解析>>
科目: 来源:2012届浙江省四校九年级联考数学卷(带解析) 题型:解答题
沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图像回答下列问题:
(1)小聪在图书馆查阅资料的时间为 ▲ 分钟,小聪返回学校的速度为 ▲ 千米/分钟,小明到图书馆的速度为 ▲ 千米/分钟;
(2)请你求出小聪返回学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明相距不超过千米时(t≥30),求他们经过的时间t的取值范围
查看答案和解析>>
科目: 来源:2012年初中毕业升学考试(河南洛阳卷)数学(带解析) 题型:解答题
某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
查看答案和解析>>
科目: 来源:2012年初中毕业升学考试(河南洛阳卷)数学(带解析) 题型:解答题
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像
(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
查看答案和解析>>
科目: 来源:2011-2012学年浙江省金华四中九年级毕业生学业考试模拟数学卷(带解析) 题型:解答题
如图1,在等腰梯形ABCO中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A,B在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com