相关习题
 0  120595  120603  120609  120613  120619  120621  120625  120631  120633  120639  120645  120649  120651  120655  120661  120663  120669  120673  120675  120679  120681  120685  120687  120689  120690  120691  120693  120694  120695  120697  120699  120703  120705  120709  120711  120715  120721  120723  120729  120733  120735  120739  120745  120751  120753  120759  120763  120765  120771  120775  120781  120789  366461 

科目: 来源:2011年初中毕业升学考试(湖北恩施州卷)数学解析版 题型:解答题

(2011广西梧州,26,12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.
(1)求CD的长;
(2)若点P以1cm/s速度运动,点Q以cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;
(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(山东淄博卷)数学 题型:解答题

(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。
(1)求∠OAB的大小;
(2)当M、N重合时,求l的解析式;
(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;
(4)求S与b的函数关系式。

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西贺州卷)数学 题型:解答题

(本小题满分10分)已知二次函数
(1)当时,函数值的增大而减小,求的取值范围。
(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线轴交点的横坐标均为整数,求整数的值。

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西梧州卷)数学 题型:解答题

(11·佛山)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:
①销售成本p(元/千克)与销售月份x的关系如图所示:

③销售量m(千克)与销售月份x满足m=100x+200;
试解决以下问题:
(1)      根据图形,求p与x之间的函数关系式;
(2)      求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的
销售利润最大?

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西梧州卷)数学 题型:解答题

(11·佛山)如图,已知二次函数y=ax2+bx+c的图像经过A(-1,-1)、B(0,2)、C(1,3);
(1)求二次函数的解析式;
2)画出二次函数的图像;

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西百色卷)数学 题型:解答题

(11·肇庆)(本小题满分10分)

(1)求证:抛物线的对称轴在y轴的左恻:

(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广东肇庆卷)数学 题型:解答题

(本题16分)如图,正比例函数和反比例函数的图象都经过点 A ( 3 , 3) ,把直线 OA 向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点。
(1)求 m的值;
( 2 )求过 A、B、D 三点的抛物线的解析式;
( 3 )若点E是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积S1,是四边形OACD 面积S的?若存在,求点 E 的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(内蒙古赤峰卷)数学 题型:解答题

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)
经过点(0,4).
(1)      求m的值;
(2)      将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.
① 试求平移后的抛物线的解析式;
② 试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西区北海卷)数学 题型:解答题

(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与
y轴交于点C.
(1)求抛物线的解析式;
(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;
(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒 个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广西区南宁卷)数学 题型:解答题

(本题满分9分)
如图11,已知抛物线与x 轴交于两点A、B,其顶点为C.

(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案