相关习题
 0  120598  120606  120612  120616  120622  120624  120628  120634  120636  120642  120648  120652  120654  120658  120664  120666  120672  120676  120678  120682  120684  120688  120690  120692  120693  120694  120696  120697  120698  120700  120702  120706  120708  120712  120714  120718  120724  120726  120732  120736  120738  120742  120748  120754  120756  120762  120766  120768  120774  120778  120784  120792  366461 

科目: 来源:2011年山东省桓台县中考二模数学 题型:解答题

(15分)如图,开口向下的抛物线轴交于两点,
抛物线上另有一点在第一象限,且使,(1)求的长及的值;(2)
设直线轴交于点,点的中点时,求直线和抛物线的解析式。

查看答案和解析>>

科目: 来源:2011届山东省济南市学业水平模拟考试数学 题型:解答题

(本小题满分10分)
已知二次函数图象经过,对称轴,抛物线与轴两交点距离为4,求这个二次函数的解析式?

查看答案和解析>>

科目: 来源:2010年黄冈市初中语、数、英三科联赛九年级数学模拟试题C卷 题型:解答题

(本小题满分12分)
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?

查看答案和解析>>

科目: 来源:2011届山东省枣庄市第15中学九年级第三次中考模拟考试数学 题型:解答题

(12分)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y
=ax2+bx+c经过点A、O、B三点.

(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011年河北省廊坊市广阳区初中毕业生统练一数学 题型:解答题

(本小题满分12分)已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.

查看答案和解析>>

科目: 来源:2011年河北省廊坊市广阳区初中毕业生统练一数学 题型:解答题

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(福建泉州卷)数学 题型:解答题

(本小题满分13分)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐
标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(福建泉州卷)数学 题型:解答题

(2011•攀枝花)如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).
(1)求二次函数的关系式;
(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<xB,当△AOB的面积最大时,求出此时直线l的关系式;
(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等.若存在,求出点C的横坐标;若不存在说明理由.

查看答案和解析>>

科目: 来源:2010-2011学年浙江省衢州华茂八年级下学期第二次月考数学试卷 题型:解答题

如图:抛物线与x 轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C。
⑴求抛物线的对称轴和点B的坐标;
⑵过点C作CP⊥对称轴于点P,连结BC交对称轴于点D,连结AC、BP,且 ,求抛物线的解析式;
⑶在⑵的条件下,设抛物线的顶点为G,连结BG、CG、求BCG的面积。

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(石家庄桥西区卷)数学 题型:解答题

(2011•雅安)如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,且与x轴交于AB两点.
(1)若二次函数的对称轴为,试求a,c的值;
(2)在(1)的条件下求AB的长;
(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.

查看答案和解析>>

同步练习册答案