相关习题
 0  120602  120610  120616  120620  120626  120628  120632  120638  120640  120646  120652  120656  120658  120662  120668  120670  120676  120680  120682  120686  120688  120692  120694  120696  120697  120698  120700  120701  120702  120704  120706  120710  120712  120716  120718  120722  120728  120730  120736  120740  120742  120746  120752  120758  120760  120766  120770  120772  120778  120782  120788  120796  366461 

科目: 来源:2011届江西省中考数学预测试卷四 题型:解答题

如图:抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q(x,0)是x轴上的一动点,过Q点作x轴的垂线,交抛物线于P点、交直线BA于D点,连结OD,PB,当点Q(x,0)在x轴上运动时,求PD与x之间的函数关系式;四边形OBPD能否成为平行四边形,若能求出Q点坐标,若不能,请说明理由。
(3) 是否存在一点Q,使以PD为直径的圆与y轴相切,若存在,求出Q点的坐标;若不存在,请说明理由.
        

查看答案和解析>>

科目: 来源:2011届南京市建邺区中考数学一模试卷 题型:解答题

(9分)已知二次函数的图象与x轴相交于A、B两点(A
左B右),与y轴相交于点C,顶点为D.
(1)求m的取值范围;
(2)当点A的坐标为,求点B的坐标;
(3)当BC⊥CD时,求m的值.

查看答案和解析>>

科目: 来源:2011届北京市石景山区中考数学一模试卷 题型:解答题

已知抛物线的顶点在坐标轴上.
(1)求的值;
(2)时,抛物线向下平移个单位后与抛物线关于轴对称,且过点,求的函数关系式;
(3)时,抛物线的顶点为,且过点.问在直线 上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011届北京市平谷区4月中考数学一模试卷 题型:解答题

已知:抛物线经过坐标原点.
(1)求抛物线的解析式和顶点B的坐标;
(2)设点A是抛物线与轴的另一个交点,试在轴上确定一点P,使PA+PB最短,并求出点P的坐标;
(3)过点A作AC∥BP轴于点C,求到直线AP、AC、CP距离相等的点的坐标.

查看答案和解析>>

科目: 来源:2011届北京市平谷区4月中考数学一模试卷 题型:解答题

已知二次函数的图象经过点,和,反比例
函数(x>0)的图象经过点(1,2).
(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象;
(2)若反比例函数)的图象与二次函数)的图象
在第一象限内交于点落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数;
(3)若反比例函数)的图象与二次函数
图象在第一象限内的交点为,点的横坐标满足,试求实数的取值范围.

查看答案和解析>>

科目: 来源:2011届北京市怀柔区中考一模数学试卷 题型:解答题

(本题满分6分)如图,已知二次函数y = x-4x + 3的图象交x轴于A、B两点(点A在点B的左侧)抛物线y = x-4x + 3交y轴于点C,
(1)求线段BC所在直线的解析式.
(2)又已知反比例函数与BC有两个交点且k为正整数,求的值.

查看答案和解析>>

科目: 来源:2011届北京市怀柔区中考一模数学试卷 题型:解答题

(本题满分5分)一个涵洞成抛物线形,它的截面如图(1).现测得,当水面宽AB =1.6 m时,涵洞顶点O与水面的距离为2.4 m.ED离水面的高FC="1.5" m,求涵洞ED宽是多少?是否会超过1 m?(提示:设涵洞所成抛物线为
 

查看答案和解析>>

科目: 来源:2011届北京市丰台区5月中考数学一模试卷 题型:解答题

已知:如图,在□ EFGH中,点F的坐标是(-2,-1),∠EFG=45°.
(1)求点H的坐标;
(2)抛物线经过点E、G、H,现将向左平移使之经过点F,得到抛物线,求抛物线的解析式;
(3)若抛物线与y轴交于点A,点P在抛物线的对称轴上运动.请问:是否存在以AG为腰的等腰三角形AGP?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011届北京市房山区4月中考数学一模试卷 题型:解答题

(本小题满分7分)已知:关于的一元二次方程
(1)若方程有两个不相等的实数根,求的取值范围;
(2)在(1)的条件下,求证:无论取何值,抛物线y=总过轴上的一个固定点;
(3)若为正整数,且关于的一元二次方程有两个不相等的整数根,把抛物线y=向右平移4个单位长度,求平移后的抛物线的解析式.

查看答案和解析>>

科目: 来源:2011届北京市东城区中考一模数学试卷 题型:解答题

如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,
与y轴交于点C,tan∠ABC=2.
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?

查看答案和解析>>

同步练习册答案