相关习题
 0  120609  120617  120623  120627  120633  120635  120639  120645  120647  120653  120659  120663  120665  120669  120675  120677  120683  120687  120689  120693  120695  120699  120701  120703  120704  120705  120707  120708  120709  120711  120713  120717  120719  120723  120725  120729  120735  120737  120743  120747  120749  120753  120759  120765  120767  120773  120777  120779  120785  120789  120795  120803  366461 

科目: 来源:2011年湖北省江凌县五三中学九年级二次函数单元卷.doc 题型:解答题

(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.

查看答案和解析>>

科目: 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷数学卷 题型:解答题

(本小题满分12分)已知:抛物线的对称轴为轴交于两点,与轴交于点其中

(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段上的一个动点(不与点O、点C重合).过点D轴于点连接.设的长为的面积为.求之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷数学卷 题型:解答题

(本小题满分12分)如图,在平面直角坐标系中,已知矩形的三个顶点.抛物线两点.

(1)直接写出点的坐标,并求出抛物线的解析式;
(2)动点从点出发,沿线段向终点运动,同时点从点出发,沿线段向终点运动,速度均为每秒1个单位长度,运动时间为秒.过点于点
过点于点,交抛物线于点.当为何值时,线段最长?

查看答案和解析>>

科目: 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷数学卷 题型:解答题

(本小题满分12分)如图1,已知抛物线经过坐标原点轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷数学卷 题型:解答题

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2011年河北省中考模拟试卷数学卷 题型:解答题

(12分)在平面直角坐标系中,抛物线经过O(0,0)、
A(4,0)、B(3,)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)

查看答案和解析>>

科目: 来源:2011年河北省中考模拟试卷数学卷 题型:解答题

(本小题满分12分)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。

(1)点C、D的坐标分别是C(       ),D(       );
(2)求顶点在直线y=上且经过点C、D的抛物
线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后   
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。

查看答案和解析>>

科目: 来源:2011年河北省中考模拟试卷数学卷 题型:解答题

(本小题满分10分)
某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:
方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;
方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p =  ;
试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!

查看答案和解析>>

科目: 来源:2011年河北省中考模拟试卷数学卷 题型:解答题

(本小题满分12分)

如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式;           
(2)P是线段AC上的一个动点,过P点作y轴的平行线交       
抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,
 使A、C、F、G这样的四个点为顶点的四边形是
平行四边形?如果存在,直接写出所有满足条件的F
点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷(一)数学卷 题型:解答题

(本小题满分12分)已知:直线轴交于A,与轴交于D,抛物线与直线交于AE两点,与轴交于BC两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.

查看答案和解析>>

同步练习册答案