科目: 来源:2012届广东省广州黄浦区中考一模数学卷(带解析) 题型:解答题
已知抛物线L:
(1)证明:不论k取何值,抛物线L的顶点C总在抛物线上;
(2)已知时,抛物线L和x轴有两个不同的交点A、B,求A、B间距取得最大值时k的值;
(3)在(2)A、B间距取得最大值条件下(点A在点B的右侧),直线y=ax+b是经过点A,且与抛物线L相交于点D的直线. 问是否存在点D,使△ABD为等边三角形,如果存在,请写出此时直线AD的解析式;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源:2012届广东省广州市白云区中考一模数学卷(带解析) 题型:解答题
已知抛物线=++-4.
(1)当=2时,求出此抛物线的顶点坐标;
(2)求证:无论为什么实数,抛物线都与轴有交点,且经过轴上的一定点;
(3)已知抛物线与轴交于A(1,0)、B(2,0)两点(A在B的左边),|1|<|2|,与轴交于C点,且S△ABC=15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.
查看答案和解析>>
科目: 来源:2012届福建厦门外国语学校九年级中考模拟数学试卷(带解析) 题型:解答题
在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.
【小题1】求此抛物线的解析式
【小题2】点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
【小题3】设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源:2012届福建厦门外国语学校九年级中考模拟数学试卷(带解析) 题型:解答题
【小题1】计算 .
【小题2】画出函数y=-x2+1的图象
【小题3】已知:如图,E,F分别是□ABCD的边AD,BC的中点.求证:AF=CE.
查看答案和解析>>
科目: 来源:2012届江苏省无锡市华仕初中中考模拟(5)数学卷(带解析) 题型:解答题
如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧), 已知点坐标为(,)。
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线 相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,过点作轴的平行线与交于点问:当点运动到什么位置时,线段的长度最大?并求出此时△的面积。
查看答案和解析>>
科目: 来源:2012届江苏省泰州市靖江外国语学校中考二模数学卷(带解析) 题型:解答题
如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO=(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目: 来源:2012届江苏省泰州市海陵区九年级二模数学卷(带解析) 题型:解答题
平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OB=OC,抛物线的顶点为D.
(1) 求此抛物线的解析式;
(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;
(3) Q为线段BD上一点,点A关于∠AQB的平分线的对称点为,若,求点Q的坐标和此时△的面积.
查看答案和解析>>
科目: 来源:2012届江苏响水初三第二次模拟数学试卷(带解析) 题型:解答题
如图1,抛物线与x轴交于B(3,0) 、C(8.0)两点,抛物线另有一点A在第一象限内,连接AO、AC,且AO=AC.
【小题1】求抛物线的解析式;
【小题2】将△OAC绕x轴旋转一周,求所得旋转体的表面积;
【小题3】如图2,将△OAC沿x轴翻折后得△ODC,设垂直于x轴的直线l:x=n与(1)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
查看答案和解析>>
科目: 来源:2012届福建永安九年级学业质量检测考试数学试卷(带解析) 题型:解答题
如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴交于点D,点C的坐标为(-3,4)。
【小题1】点A的坐标为 ▲ ;
【小题2】求过点A、O、C的抛物线解析式,并求它的顶点坐标;
【小题3】在直线AB上是否存在点P,使得以点A、O、P为顶点的三角形与△COD相似。若存在,求出点P的坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源:2012届河南安阳九年级5月中考模拟考试数学试卷(带解析) 题型:解答题
如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的啦标为(-1,0),点B在抛物线上,
【小题1】点A的坐标为__________,点B的坐标为___________;抛物线的解析式为_________;
【小题2】在抛物线上是否还存在点P(点B除外),使△ACP是以AC为直角边向直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由
【小题3】若点D是(1)中所求抛物线在第三象限内的一个动点,连结BD、CD。当△BCD的面积最大时,求点D的坐标。
【小题4】若点P是(1)中所求抛物线上一个动点,以线段AB、BP为邻边作平形四边形ABPQ。当点Q落在x轴上时,直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com