科目: 来源:2012届江苏省盐城市解放路学校中考仿真数学卷(带解析) 题型:解答题
二次函数的图像交y轴于C点,交轴于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上
一个动点(点Q不与点O、B重合),过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.
(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.
查看答案和解析>>
科目: 来源:2012届江苏省无锡市新区九年级二模数学卷(带解析) 题型:解答题
如图,在平面直角坐标系xoy中,抛物线y=x2-x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,C两点的坐标和抛物线的顶点M坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<4.5时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
查看答案和解析>>
科目: 来源:2012届江苏省无锡市新区九年级二模数学卷(带解析) 题型:解答题
某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) | 1 | 2 | 2.5 | 3 | 5 |
yA(万元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
查看答案和解析>>
科目: 来源:2012届四川内江二中第二次中考模拟数学试卷(带解析) 题型:解答题
如图,已知平面直角坐标系中,点A(2,m),B(-3,n)为两动点,其中m﹥1,连结,,作轴于点,轴于点.
【小题1】求证:mn=6
【小题2】当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式
【小题3】在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使S⊿POF:S⊿QOF=1:2?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2012届江苏盐城中学中考模拟考试(二)数学试卷(带解析) 题型:解答题
如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(-1,0),点C的坐标为(0,-3),抛物线的顶点为D.
【小题1】求抛物线的解析式和顶点D的坐标
【小题2】二次函数的图像上是否存在点P,使得S△PAB=8S△ABD?若存在,求出P点坐标;若不存在,请说明理由;
【小题3】若抛物线的对称轴与x轴交于E点,点F在直线BC上,点M在的二次函数图像上,如果以点F、M、D、E为顶点的四边形是平行四边形,请你求出符合条件的点M的坐标.
查看答案和解析>>
科目: 来源:2012届江苏无锡北塘区中考二模数学试卷(带解析) 题型:解答题
在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,点B的坐标为(3,0),将直线沿轴向上平移3个单位长度后恰好经过B、C两点 .
【小题1】求直线BC及抛物线的解析式
【小题2】设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
【小题3】连结CD,求∠OCA与∠OCD两角度数的和
查看答案和解析>>
科目: 来源:2012届河南驻马店中考二模数学试卷(带解析) 题型:解答题
如图,在平面直角坐标系xOy中,抛物线与y轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从0,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x辅于点F.设动点P,Q移动的时间为t(单位:秒).
【小题1】求A,B,C三点的坐标和抛物线的顶点坐标;
【小题2】当O<t<时’△PQF的面积是否为定值?若是,求出此定值,若不是,说明理由
【小题3】当t为何值时,△PQF为等腰三角形?请写出解答过程.
查看答案和解析>>
科目: 来源:2012届福建漳州中考模拟数学试卷(带解析) 题型:解答题
如图,抛物线过原点O,与x轴交于A,点D(4,2)在该抛物线上,过点D作CD∥x轴,交抛物线于点C,交y轴于点B,连结CO、AD.
【小题1】求抛物线的解析式及点C的坐标
【小题2】将△BCO绕点O按顺时针旋转90°后 再沿x轴对折得到△OEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
【小题3】设过点E的直线交OA于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形AOCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2012届江苏省江阴市石庄中学九年级中考模拟考试数学试卷(带解析) 题型:解答题
四边形ABCD是平行四边形,AB=3,AD= 5,高DE=2.建立如图所示的平面直角坐标系,其中点A与坐标原点O重合.
【小题1】求BC边所在直线的解析式;
【小题2】设点F为直线BC与y轴的交点,求经过点B,D,F的抛物线解析式;
【小题3】判断?ABCD的对角线的交点G是否在(2)中的抛物线上,并说明理由.
查看答案和解析>>
科目: 来源:2012届江苏省江阴市石庄中学九年级中考模拟考试数学试卷(带解析) 题型:解答题
如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段BC交于点N,点P为线段BC上一个动点(与B、C不重合) .
【小题1】求点A、B的坐标;
【小题2】在抛物线的对称轴上找一点D,使|DC-DB|的值最大,求点D的坐标;
【小题3】过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com