相关习题
 0  120673  120681  120687  120691  120697  120699  120703  120709  120711  120717  120723  120727  120729  120733  120739  120741  120747  120751  120753  120757  120759  120763  120765  120767  120768  120769  120771  120772  120773  120775  120777  120781  120783  120787  120789  120793  120799  120801  120807  120811  120813  120817  120823  120829  120831  120837  120841  120843  120849  120853  120859  120867  366461 

科目: 来源:2012届江苏盐城九年级中考模拟考试数学试卷(带解析) 题型:解答题

如图,抛物线经过三点.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以
的最小值;
(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012届广西武鸣中考第一次模拟数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目: 来源:2012届湖南衡阳市初中学业水平模拟考试数学卷(带解析) 题型:解答题

如图9, 已知抛物线轴交于A (-4,0) 和B(1,0)两点,与轴交于C点.

(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF//ACBCF,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上AC两点间的一个动点,过P轴的平行线,交ACQ,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

查看答案和解析>>

科目: 来源:2012届浙江省四校九年级联考数学卷(带解析) 题型:解答题

在平面坐标系xoy中,直线xy轴交于点AB,作△AOB为外接⊙E.将直角三角板的30°角的顶点C摆放在圆弧上,三角板的两边始终过点OA,并且不断地转动三角板.
(1)如图1,当点CB重合时,连接OE求扇形EOA的面积;
(2)当时,求经过AOC三点的抛物线的解析式,直接写出顶点坐标;
(3)如图2,在转动中,过C作⊙E的切线,交y轴于D,当ACDB四点围成的四边形是梯形时,求点D的坐标.

查看答案和解析>>

科目: 来源:2012届浙江省金衢十一校九年级适应性练习数学卷(带解析) 题型:解答题

已知如图,对称轴为直线的抛物线轴相交于点B、O.

(1)求抛物线的解析式,并求出顶点A的坐标.
(2) 连结AB,平移AB所在的直线,使其经过原点O,得到直线.点上一动点,当△的周长最小时,求点P的坐标.
(3)当△的周长最小时,在直线AB的上方是否存在一点Q,使以A,B,Q为顶点的三角形与△POB相似,若存在,直接写出点Q的坐标;若不存在,说明理由.(规定:点Q的对应顶点不为点O

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(河南洛阳卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)求的值
(2)设点P的横坐标为
①用含的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖北武汉卷)数学(带解析) 题型:解答题

如图1,点A为抛物线C1的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a
交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴
于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

图1                             图2

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖北武汉卷)数学(带解析) 题型:解答题

如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和
矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的
距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数
关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

科目: 来源:2012届浙江省兰溪市柏社中学九年级下学期独立作业数学卷(带解析) 题型:解答题

已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.△ABC的面积等于1.5.
(1)请求出抛物线的解析式,并求出点A的坐标.
(2)在抛物线上是否存在点M,使得△MAB的面积等于△ABC的面积.如果存在,求出符合条件的点M的坐标;如果不存在,请说明理由.
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一 个顶点E在PQ上.请求出此时点Q的坐标和直线BQ的函数解析式;

②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.

查看答案和解析>>

科目: 来源:2012届浙江省兰溪市柏社中学九年级下学期独立作业数学卷(带解析) 题型:解答题

定义为函数的“特征数”.如:函数的“特征数”是,函数的“特征数”是,函数的“特征数”是

(1)将“特征数”是的函数图象向下平移2个单位,得到一个新函数,这个新
函数的解析式是             
(2)在(1)中,平移前后的两个函数分别与轴交于A、B两点,与直线分别交于
D、C两点,在给出的平面直角坐标系中画出图形,判断以A、B、C、D四点为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是的函数图象有交点,试求出实数
b 的取值范围.

查看答案和解析>>

同步练习册答案