相关习题
 0  120682  120690  120696  120700  120706  120708  120712  120718  120720  120726  120732  120736  120738  120742  120748  120750  120756  120760  120762  120766  120768  120772  120774  120776  120777  120778  120780  120781  120782  120784  120786  120790  120792  120796  120798  120802  120808  120810  120816  120820  120822  120826  120832  120838  120840  120846  120850  120852  120858  120862  120868  120876  366461 

科目: 来源:2012届湖南省临武县楚江中学初中毕业学业考试模拟数学试卷1(带解析) 题型:解答题

如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于点(8,8),直线与轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于D点,与轴交于点E.设线段PD的长为,点的横坐标为t,求与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段上是否存在点,使得以点P、D、B为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
                                           

查看答案和解析>>

科目: 来源:2012届湖南省临武县楚江中学初中毕业学业考试模拟数学试卷1(带解析) 题型:解答题

某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡政策的实施,商场决定采取适当的降价措施。调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台。
(1)假设每台冰箱降价x元,商场每天销售这种冰箱y台,请写出y与x的函数关系式(不要求写自变量的范围)
(2)若每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数表达式(不要求写自变量的取值范围);
(3)商场要想在这种冰箱销售中每天赢利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(4)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目: 来源:2012届浙江省杭州市中考数学模拟数学试卷(带解析) 题型:解答题

如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

查看答案和解析>>

科目: 来源:2012届湖南临武县楚江中学初中毕业学业考试模拟(七)数学试卷(带解析) 题型:解答题

如图所示,抛物线my=ax2+ba<0,b>0)与x轴于点AB(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,x轴的另一个交点为A1.

(1)当a=-1,b=1时,求抛物线n的解析式;
(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.

查看答案和解析>>

科目: 来源:2012届湖南临武县楚江中学初中毕业学业考试模拟(三)数学试卷(带解析) 题型:解答题

如图,对称轴为直线x=一的抛物线经过点A(-6,0)和点B(0,4).

(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012届江苏省灌云县穆圩中学中考模拟数学试卷(带解析) 题型:解答题

如图,在坐标系中,菱形ABCD的边BC与x轴重合,点B与原点重合,AB=10, ∠ABC=60°.动点P从点B出发沿BC边以每秒1个单位长的速度匀速运动;动点Q从点D出发沿折线DC-CB-BA以每秒3个单位长的速度匀速运动,过点P作PF⊥BC,交折线AB-AC于点E,交直线AD于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.
(1)写出点A与点D的坐标
(2)当t=3秒时,试判断QE与AB之间的位置关系?
(3)当Q在线段DC上运动时,若△PQF为等腰三角形,求t的值;
(4)设△PQE的面积为S,求S与t的函数关系式;

查看答案和解析>>

科目: 来源:2012届江苏省灌云县穆圩中学中考模拟数学试卷(带解析) 题型:解答题

今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:

周数x
1
2
3
4
价格y(元/千克)
2
2.2
2.4
2.6
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x 的函数关系式;
(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=- x2+bx+c. ,请求出5月份y与x的函数关系式
(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬
菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销
售此种蔬菜一千克的利润最大?且最大利润分别是多少?

查看答案和解析>>

科目: 来源:2012届河南信阳市二中中考模拟考试数学试卷(带解析) 题型:解答题

已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于AB两点(AB的左边).

(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OPxMQ1,求y1x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQBPB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.

查看答案和解析>>

科目: 来源:2012届湖南省临武县楚江中学初中毕业学业考试模拟数学试卷6(带解析) 题型:解答题

如图,已知抛物线经过定点A(1,0),它的顶点P是y轴正半轴上的一个动点,
P点关于x轴的对称点为P′,过P′ 作x轴的平行线交抛物线于B、D两点(B点在y轴右
侧),直线BA交y轴于C点.按从特殊到一般的规律探究线段CA与CB的比值:
(1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CA与CB的比值;
(2)若P点坐标为(0,m)时(m为任意正实数),线段CA与CB的比值是否与⑴所求的比值相同?请说明理由.

查看答案和解析>>

科目: 来源:2012届湖南省临武县楚江中学初中毕业学业考试模拟数学试卷9(带解析) 题型:解答题

在平面直角坐标系中,抛物线轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:=        ,b=        ,顶点C的坐标为        
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

查看答案和解析>>

同步练习册答案