相关习题
 0  120684  120692  120698  120702  120708  120710  120714  120720  120722  120728  120734  120738  120740  120744  120750  120752  120758  120762  120764  120768  120770  120774  120776  120778  120779  120780  120782  120783  120784  120786  120788  120792  120794  120798  120800  120804  120810  120812  120818  120822  120824  120828  120834  120840  120842  120848  120852  120854  120860  120864  120870  120878  366461 

科目: 来源:2012届江苏省南通市第一初级中学九年级第一次模拟考试数学试卷(带解析) 题型:解答题

已知:直角坐标系xoy中,将直线沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线轴交于A,B两点(点A在点B的右侧),且经过点C,
(1)求直线的解析式;
(2)求抛物线的解析式;
(3)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;

查看答案和解析>>

科目: 来源:2012届浙江省丽水市中考模拟试卷5数学试卷(带解析) 题型:解答题

已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).
(1)求点B,C,D的坐标及射线AD的解析式;
(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;
(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.

查看答案和解析>>

科目: 来源:2012届浙江省丽水市中考模拟试卷2数学试卷(带解析) 题型:解答题

已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>

科目: 来源:2012届浙江省丽水市中考模拟试卷2数学试卷(带解析) 题型:解答题

我市某品牌服装公司生产的玩具4月份每件生产成本为50元,5、6月每件玩具生产成本平均降低的百分率为x.
(1)用含x的代数式表示5月份每件玩具的生产成本;
(2)如果6月份每件生产成本比4月份少9.5元,试求x的值;
(3)该玩具5月份每件的销售价为60元,6月份每件的销售价比5月份有所下降,若下降的百分率与5、6月份每件玩具平均降低成本的百分率相同,且6月份每件玩具的销售价不低于48元,设6月份每件玩具获得的利润为y元,试求y与x的函数关系式,并确定单件利润y的最大值.(注:利润=销售价-生产成本)

查看答案和解析>>

科目: 来源:2012届江苏省淮安市清浦区清浦中学中考模拟试卷3数学试卷(带解析) 题型:解答题

随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,如图①所示;种植花卉的利润y2与投资成本x成二次函数关系,如图②所示(注:利润与投资成本的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z与投入种植花卉的投资量x之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?

查看答案和解析>>

科目: 来源:2012届江苏省淮安市清浦区清浦中学中考模拟试卷2数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线轴交于点M、与轴交于点N,抛物线的图象经过点C、M、N.解答下列问题:
(1)分别求出直线和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.
(3)将抛物线进行平移,使它经过点,求此时抛物线的解析式.

查看答案和解析>>

科目: 来源:2012届江苏省淮安市清浦区清浦中学中考模拟数学试卷(带解析) 题型:解答题

如图①, 已知抛物线a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C

(1) 求抛物线的解析式;
(2) 点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BECE,求△BCE面积的最大值,并求此时E点的坐标.

查看答案和解析>>

科目: 来源:2012届江苏省淮安市清浦区清浦中学中考模拟数学试卷(带解析) 题型:解答题

如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线//BC,交直线CD于点F.将直线向右平移,设平移距离BE为 (t0),直角梯形ABCD被直线扫过的面积(图中阴影部份)为SS关于的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

信息读取
(1)梯形上底的长AB=     
(2) 直角梯形ABCD的面积=         
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4) 当时,求S关于的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1: 3.

查看答案和解析>>

科目: 来源:2012届河北省保定市易县九年级第二次模拟检测数学试卷(带解析) 题型:解答题

某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10xn
(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n=      
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.

查看答案和解析>>

科目: 来源:2012届河北省保定市易县九年级第一次模拟检测数学试卷(带解析) 题型:解答题

如图,抛物线y=(x+1)2k x轴交于AB两点,与y轴交于点C (0,-3).

(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PAPC的值最小,求此时点P的坐标;
(3)点M是抛物线上一动点,且在第三象限.当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;
(4)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以ABEF为顶点的的四边形为平行四边形?若存在,直接写出出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案