相关习题
 0  120689  120697  120703  120707  120713  120715  120719  120725  120727  120733  120739  120743  120745  120749  120755  120757  120763  120767  120769  120773  120775  120779  120781  120783  120784  120785  120787  120788  120789  120791  120793  120797  120799  120803  120805  120809  120815  120817  120823  120827  120829  120833  120839  120845  120847  120853  120857  120859  120865  120869  120875  120883  366461 

科目: 来源:2012年初中毕业升学考试(湖南张家界卷)数学(带解析) 题型:解答题

如图,抛物线与x轴交于C.A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.
(1)分别求出点A.点B的坐标;
(2)求直线AB的解析式;
(3)若反比例函数的图象过点D,求k值;
(4)两动点P、Q同时从点A出发,分别沿AB.AO方向向B.O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(四川广安卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2
(1)求抛物线的解析式.
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(海南省I卷)数学(带解析) 题型:解答题

如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,
OA交其对称轴于点M,点M、N关于点P对称,连接AN、ON
(1)求该二次函数的关系式.
(2)若点A的坐标是(6,-3),求△ANO的面积.
(3)当点A在对称轴右侧的二次函数图象上运动,请解答下列问题:
①证明:∠ANM=∠ONM
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(贵州安顺卷)数学(带解析) 题型:解答题

如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(江苏常州卷)数学(带解析) 题型:解答题

某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(福建莆田卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过点A。

(1)(2分)求c的值;   .
(2)(6分)若a=-l,且抛物线与矩形有且只有三个交点A、D、E,求△ADE的面积S的最大值;
(3)(6分)若抛物线与矩形有且只有三个交点A、M、N,线段MN的垂直平分线l过点O,交线段BC于点
F。当BF=1时,求抛物线的解析式.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖南益阳卷)数学(带解析) 题型:解答题

已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.
(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖北天门、仙桃、潜江、江汉油田卷)数学(带解析) 题型:解答题

如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖南娄底卷)数学(带解析) 题型:解答题

如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖南娄底卷)数学(带解析) 题型:解答题

已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,与y轴交于点C,且满足
(1)求这个二次函数的解析式;
(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.

查看答案和解析>>

同步练习册答案