相关习题
 0  120691  120699  120705  120709  120715  120717  120721  120727  120729  120735  120741  120745  120747  120751  120757  120759  120765  120769  120771  120775  120777  120781  120783  120785  120786  120787  120789  120790  120791  120793  120795  120799  120801  120805  120807  120811  120817  120819  120825  120829  120831  120835  120841  120847  120849  120855  120859  120861  120867  120871  120877  120885  366461 

科目: 来源:2012年初中毕业升学考试(贵州黔西南卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(贵州贵阳卷)数学(带解析) 题型:解答题

如图,二次函数y=x2﹣x+c的图象与x轴分别交于A、B两点,顶点M关于x轴的对称点是M′.
(1)若A(﹣4,0),求二次函数的关系式;
(2)在(1)的条件下,求四边形AMBM′的面积;
(3)是否存在抛物线y=x2﹣x+c,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012届江西省南昌市十四校九年级第一次联考数学试卷(带解析) 题型:解答题

已知抛物线与x轴交于两点,与y轴交于点C,AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画出抛物线和直线BC.
(3)若⊙P过A、B、C三点,求⊙P的半径.
(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC分成面积比为的两部
分?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012届浙江省丽水市庆元县中考模拟数学试卷(带解析) 题型:解答题

已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;

查看答案和解析>>

科目: 来源:2012届湖北省广水市城郊中心中学九年级下学期月考数学试卷(带解析) 题型:解答题

在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示;抛物线经过点B。

(1)求点B的坐标;                
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,求所以点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(浙江湖州卷)数学(带解析) 题型:解答题

如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- ,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )
①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(浙江台州卷)数学(带解析) 题型:解答题

某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t(秒)
0
0.2
0.4
0.6
0.8
1.0
1.2

行驶距离s(米)
0
2.8
5.2
7.2
8.8
10
10.8

(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较的大小,并解释比较结果的实际意义.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(四川资阳卷)数学(带解析) 题型:解答题

抛物线的顶点在直线上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.
(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)(3分)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)(3分)若射线NM交x轴于点P,且PA×PB=,求点M的坐标.

查看答案和解析>>

科目: 来源:2012届山东省临淄外国语实验学校九年级中考模拟考试(2)数学试卷(带解析) 题型:解答题

二次函数y=﹣x2+2x+m的图象与x轴交于A.B两点(B在A右侧),顶点为C,且A.B两点间的距离等于点C到x轴的距离的2倍.
(1)求此抛物线的解析式.
(2)求直线BC的解析式.
(3)若点P在抛物线的对称轴上,且⊙P与x轴以及直线BC都相切,求点P的坐标.
【提示:(+1)(-1)=1】

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(湖北十堰卷)数学(带解析) 题型:解答题

抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

查看答案和解析>>

同步练习册答案