相关习题
 0  120692  120700  120706  120710  120716  120718  120722  120728  120730  120736  120742  120746  120748  120752  120758  120760  120766  120770  120772  120776  120778  120782  120784  120786  120787  120788  120790  120791  120792  120794  120796  120800  120802  120806  120808  120812  120818  120820  120826  120830  120832  120836  120842  120848  120850  120856  120860  120862  120868  120872  120878  120886  366461 

科目: 来源:2012届浙江省富阳市永兴中学九年级上学期第二次知识检测数学试卷(带解析) 题型:解答题

已知二次函数.
(1).求出该函数图象的顶点坐标,对称轴,并在右侧的网格中画出这个函数的大致图象。
(2)利用函数图象回答:当x在什么范围内时,y>0?

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(山东青岛卷)数学(带解析) 题型:解答题

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.
(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(山东东营卷)数学(带解析) 题型:解答题

已知抛物线经过A(2,0). 设顶点为点P,与x轴的另一交点为点B.
(1)求b的值,求出点P、点B的坐标;
(2)如图,在直线 上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐
标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

科目: 来源:2012届上海市奉贤区九年级调研测试数学试卷(带解析) 题型:解答题

已知:直角坐标平面内有点,过原点的直线,且与过点的抛物线相交于第一象限的点,若
(1)求抛物线的解析式;
(2)作轴于点,设有直线交直线,交抛物线于点,若组成的四边形是平行四边形,求的值。

查看答案和解析>>

科目: 来源:2012届浙江省江山市中考一模数学试卷(带解析) 题型:解答题

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内。
(1)  求点E的坐标;
(2)  点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,
连结PN。设PE=x.△PMN的面积为S。
① 求S关于x的函数关系式;
② △PMN的面积是否存在最大值,若不存在,请说明理由。若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2)。设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯形ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式。

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(山东济南卷)数学(带解析) 题型:解答题

如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.
(1)求抛物线的解析式;
(2)求cos∠CAB的值和⊙O1的半径;
(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(山东枣庄卷)数学(带解析) 题型:解答题

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠
在两坐标轴上,点C为 (-1,0).如图所示,B点在抛物线y=x2x-2图象上,过点B作
BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所
有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(四川巴中卷)数学(带解析) 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件。如果每
件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元)。设每件商品的售价上涨x元(x
为整数),每个月的销售利润为y元,
(1)求y与x的函数关系式,并直接写出x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(贵州遵义卷)数学(带解析) 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).
(1)求抛物线的函数解析式及点A的坐标;
(2)在抛物线上求点P,使SPOA=2SAOB
(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年初中毕业升学考试(贵州铜仁卷)数学(带解析) 题型:解答题

如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.

(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案