科目: 来源:2012届湖北鄂州葛店中学九年级5月月考数学试卷(带解析) 题型:解答题
如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.
(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
查看答案和解析>>
科目: 来源:2012—2013学年四川成都望子成龙学校九年级上期中数学试卷(带解析) 题型:解答题
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2012—2013学年四川成都望子成龙学校九年级上期中数学试卷(带解析) 题型:解答题
如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。
(1) 求证:△ABE∽△ECM;
(2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;
(3) 当线段AM最短时,求重叠部分的面积。
查看答案和解析>>
科目: 来源:2012—2013学年四川成都望子成龙学校九年级上期中数学试卷(带解析) 题型:解答题
如图,已知抛物线经过点(0,-3),且该抛物线与x轴的一个交点在(1,0)和(3,0)之间,那么b的取值范围是 .
查看答案和解析>>
科目: 来源:2012届山东省东阿县姚寨中学九年级中考数学试卷4(带解析) 题型:解答题
如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)填空:点B的坐标为(_ ),点C的坐标为(_ );
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
查看答案和解析>>
科目: 来源:2012届山东省东阿县姚寨中学九年级中考数学试卷3(带解析) 题型:解答题
已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.
查看答案和解析>>
科目: 来源:2012届山东省东阿县姚寨中学九年级中考数学试卷3(带解析) 题型:解答题
已知:关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;
(3)在(2)的条件下,直线:绕着点旋转得到直线:,设直线与轴交于点,与抛物线交于点(不与点重合),当时,求的取值范围.
查看答案和解析>>
科目: 来源:2012届山东省东阿县姚寨中学九年级中考数学试卷1(带解析) 题型:解答题
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
查看答案和解析>>
科目: 来源:2013届浙江宁波七中九年级10月月考数学试卷(带解析) 题型:解答题
如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.
(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.
查看答案和解析>>
科目: 来源:2013届浙江宁波七中九年级10月月考数学试卷(带解析) 题型:解答题
已知抛物线y=x2+x-.
(1)求它的顶点坐标和对称轴;
(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com