科目: 来源:2013届江苏省盐城市景山中学中考模拟数学试卷(带解析) 题型:解答题
抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).
①当正方形PEDC顶点D落在此抛物线上时,求OP的长;
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.
查看答案和解析>>
科目: 来源:2013届江苏省盐城市景山中学中考模拟数学试卷(带解析) 题型:解答题
某厂销售一种专利产品,现准备从专卖店销售和电视直销两种销售方案中选择一种进行销售.若只是专卖店销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为40元/件,无论销售多少,每月还需支出房租费52500元,设月利润为w专(元)(利润 = 销售额-成本-广告费).若只是电视直销,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤80),当月销量为x(件)时,每月还需缴纳x2 元的广告费,设月利润为w电(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w专、w电与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在专卖店销售的月利润最大?若是电视直销月利润的最大值与在专卖店销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在专卖店还是电视直销才能使所获月利润较大?
查看答案和解析>>
科目: 来源:2013年江苏省东台市实验中学中考数学模拟试卷(带解析) 题型:解答题
如图,抛物线交轴于A、B两点,交轴于点C,
点P是它的顶点,点A的横坐标是3,点B的横坐标是1.
(1)求、的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.
(参考数据,,)
查看答案和解析>>
科目: 来源:2013年江苏省东台市实验中学中考数学模拟试卷(带解析) 题型:解答题
某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第年的维修、保养费用累计为(万元),且,若第1年的维修、保养费用为2万元,第2年为4万元。
(1)求与之间的关系式;
(2)投产后,这个企业在第几年就能收回投资?
查看答案和解析>>
科目: 来源:2013年江苏省东台市实验中学中考数学模拟试卷(带解析) 题型:解答题
已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1
(1)求抛物线的解析式
(2)画出抛物线的草图
(3)根据图象回答:当x取何值时,y>0
查看答案和解析>>
科目: 来源:2013年江苏省东台市实验中学中考数学模拟试卷(带解析) 题型:解答题
若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式;
(2)求出这条抛物线上纵坐标为12的点的坐标。
查看答案和解析>>
科目: 来源:2013届江苏扬州江都区九年级网上阅卷适应性调研考试数学试卷(带解析) 题型:解答题
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)
(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
查看答案和解析>>
科目: 来源:2013届山东省德州市九年级第一次模拟考试数学试卷(带解析) 题型:解答题
已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
查看答案和解析>>
科目: 来源:2013届山东省济南市天桥区九年级中考一模数学试卷(带解析) 题型:解答题
如图,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线的图象上,过点B作轴,垂足为D,且B点横坐标为.
(1)求证:;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使 △ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2013届山东省济南市天桥区九年级中考一模数学试卷(带解析) 题型:解答题
如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).
(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com