相关习题
 0  122701  122709  122715  122719  122725  122727  122731  122737  122739  122745  122751  122755  122757  122761  122767  122769  122775  122779  122781  122785  122787  122791  122793  122795  122796  122797  122799  122800  122801  122803  122805  122809  122811  122815  122817  122821  122827  122829  122835  122839  122841  122845  122851  122857  122859  122865  122869  122871  122877  122881  122887  122895  366461 

科目: 来源:2011年江苏省常州市中考数学试卷 题型:解答题

(2002•徐州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目: 来源:四川省凉山州2011年中考数学试题 题型:解答题

(本题满分8分)两个全等的直角三角形重叠放在直线上,如图⑴,AB=6,BC=8,∠ABC=90°,将Rt△ABC在直线上左右平移,如图⑵所示.
⑴求证:四边形ACFD是平行四边形;
⑵怎样移动Rt△ABC,使得四边形ACFD为菱形;
⑶将Rt△ABC向左平移,求四边形DHCF的面积.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(湖南湘潭卷)数学 题型:解答题

(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:

它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和不同点:
相同点:
                                              
                                              
不同点:
                                              
                                              

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(2011•舟山)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(江西卷)数学 题型:解答题

(本小题满分9分)如图12,四边形ABCD是正方形,点EK分别在BCAB
上,点GBA的延长线上,且CE=BK=AG.
⑴求证:①DE=DG;②DEDG
⑵尺规作图:以线段DEDG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;
⑷当时,请直接写出的值.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(浙江舟山卷)数学解析版 题型:解答题

(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(浙江金华卷)数学 题型:解答题

(本题8分)如图,射线PG平分∠EPFO为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于ABCD,连结OA,此时有OA//PE
(1)求证:AP=AO
(2)若tan∠OPB=,求弦AB的长;
(3)若以图中已标明的点(即PABCDO)构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲  ▲  ▲ .

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(广东深圳卷)数学 题型:解答题

(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BCABDC,过点DDEBC,垂足为E,并延长DEF,使EFDE.联结BFCDAC
(1)求证:四边形ABFC是平行四边形;
(2)如DE2BE·CE,求证四边形ABFC是矩形.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(浙江金华卷)数学 题型:解答题

(本小题满分8分)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连结EG、CG,如图(1),易证 EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和
位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系
和位置关系?请写出你的猜想,并加以证明.

查看答案和解析>>

科目: 来源:2011年初中毕业升学考试(山东泰安卷)数学解析版 题型:解答题

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN
    
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EAMC,连结EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BABCEAMC,∴BAEABCMC,即BEBM
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵________________________________
∴△AEM≌△MCN (ASA).∴AMMN
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn   °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

查看答案和解析>>

同步练习册答案