相关习题
 0  125520  125528  125534  125538  125544  125546  125550  125556  125558  125564  125570  125574  125576  125580  125586  125588  125594  125598  125600  125604  125606  125610  125612  125614  125615  125616  125618  125619  125620  125622  125624  125628  125630  125634  125636  125640  125646  125648  125654  125658  125660  125664  125670  125676  125678  125684  125688  125690  125696  125700  125706  125714  366461 

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

如图,直线y=-x+3与x轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若P是抛物线上一点,且S△ABP=S△ABC,这样的点P有______个.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知一个二次函数的图象经过A(-1,0)、B(0,3)、C(4,-5)三点.
(1)求这个二次函数的解析式及其图象的顶点D的坐标;
(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.
(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;
(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;
(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿C?B方向平移,使其直角顶点落在BC的中点M,如图2示.探究:三角板沿C?B方向平移的距离为______;
(2)操作2:在(1)情形下,将三角板绕BC的中点M顺时针方向旋转角度α(0°<α<90°)如图3示.探究:设三角板两直角边分别与AB、AC交于P、Q,观察四边形MPAQ形状的变化,发现其面积始终不变,那么四边形MPAQ的面积S四边形MPAQ=______;
(3)在(2)的情形下,连PQ,设BP=x,记△APQ的面积为y,试求y关于x的函数关系式;并求x为何值时,△PQA面积有最大值,最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,两个一次函数y=x,y=-2x+12的图象相交于点A,动点E从O点出发,沿OA方向以每秒1个单位的速度运动,作EF∥y轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与△AOC的重叠部分的面积为S.
(1)求点A的坐标;
(2)求过A、B、O三点的抛物线的顶点P的坐标;
(3)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式;
(4)在(3)的条件下,t为何值时,S有最大值,最大值是多少?此时(2)中的抛物线的顶点P是否在直线EF上,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.
(1)用含t的代数式表示QP的长;
(2)设△CMQ的面积为S,求出S与t的函数关系式;
(3)求出t为何值时,△CMQ为等腰三角形?

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案