相关习题
 0  125523  125531  125537  125541  125547  125549  125553  125559  125561  125567  125573  125577  125579  125583  125589  125591  125597  125601  125603  125607  125609  125613  125615  125617  125618  125619  125621  125622  125623  125625  125627  125631  125633  125637  125639  125643  125649  125651  125657  125661  125663  125667  125673  125679  125681  125687  125691  125693  125699  125703  125709  125717  366461 

科目: 来源:第2章《二次函数》常考题集(21):2.7 最大面积是多少(解析版) 题型:解答题

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(21):2.7 最大面积是多少(解析版) 题型:解答题

如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部分)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积,
②当2<t<4时,求S关于t的函数解析式;
(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(21):2.7 最大面积是多少(解析版) 题型:解答题

已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)用含m的代数式表示点A、B的坐标;
(2)求的值;
(3)当C、A两点到y轴的距离相等,且S△CED=时,求抛物线和直线BE的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°(图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于点D.
(1)求点D的坐标;
(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式;
(3)P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;
(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2
①求S关于t的函数关系式;
②(附加题)求S的最大值.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=-(x-m)2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C.
(1)写出m=1时与抛物线有关的三个正确结论;
(2)当点B在原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值;若不存在,请说明理由;
(3)请你提出一个对任意的m值都能成立的正确命题(说明:根据提出问题的水平层次,得分略有差异).

查看答案和解析>>

科目: 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

查看答案和解析>>

同步练习册答案